Publikationen von B Schölkopf

Konferenzband (9)

121.
Konferenzband
Machine learning approaches to statistical dependences and causality (Dagstuhl Reports, 09401). Dagstuhl Seminar: Machine learning approaches to statistical dependences and causality , Schloss Dagstuhl, Germany, 27. September 2009 - 02. Oktober 2009. (2009)
122.
Konferenzband
Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference. Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), Vancouver, BC, Canada, 04. Dezember 2007 - 07. Dezember 2007. (2007), 1690 S.
123.
Konferenzband
Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference. Nineteenth Annual Conference on Neural Information Processing Systems (NIPS 2005), Vancouver, BC, Canada, 05. Dezember 2005 - 08. Dezember 2005. MIT Press, Cambridge, MA, USA (2006), 1676 S.
124.
Konferenzband
Pattern Recognition: 26th DAGM Symposium: Tübingen, Germany, August 30 - September 1, 2004 (Lecture Notes in Computer Science, 3175). 26th Pattern Recognition Symposium, Tübingen, Germany, 30. August 2004 - 01. September 2004. Springer, Berlin, Germany (2004), 581 S.
125.
Konferenzband
Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference. Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003), Vancouver, BC, Canada, 08. Dezember 2003 - 13. Dezember 2003. MIT Press, Cambridge, MA, USA (2004), 1621 S.
126.
Konferenzband
Learning theory and Kernel machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003) (Lecture Notes in Computer Science, 2777). 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), Washington, DC, USA, 24. August 2003 - 27. August 2003. Springer, Berlin, Germany (2003), 746 S.
127.
Konferenzband
Inference Principles and Model Selection (Dagstuhl Reports, 01301). Inference Principles and Model Selection: Dagstuhl Seminar 01301, Dagstuhl, Germany, 23. Juli 2001 - 27. Juli 2001. Leibniz-Zentrum für Informatik, Dagstul, Germany (2001)
128.
Konferenzband
Advances in Kernel Methods: Support Vector Learning. Eleventh Annual Conference on Neural Information Processing (NIPS 1997), Breckenridge, CO, USA, 01. Dezember 1997 - 06. Dezember 1997. MIT Press, Cambridge, MA, USA (1999), 376 S.

Konferenzbeitrag (158)

129.
Konferenzbeitrag
Besserve, M.; Shajarisales, N.; Janzing, D.; Schölkopf, B.: Cause-effect inference through spectral independence in linear dynamical systems: theoretical foundations. In: Proceedings of Machine Learning Research (PMLR), Bd. 177, S. 110 - 143. 1st Conference on Causal Learning and Reasoning (CLeaR 2022), Eureka, CA, USA, 11. April 2022 - 13. April 2022. Curran, Red Hook, NY, USA (2022)
130.
Konferenzbeitrag
Besserve, M.; Sun, R.; Janzing, D.; Schölkopf, B.: A theory of independent mechanisms for extrapolation in generative models. In: Proceedings of the AAAI Conference on Artificial Intelligence, Bd. 35, S. 6741 - 6749. 35th AAAI Conference on Artificial Intelligence: A Virtual Conference, 02. Februar 2021 - 09. Februar 2021. (2021)
131.
Konferenzbeitrag
Parascandolo, G.; Neitz, A.; Orvieto, A.; Gresele, L.; Schölkopf, B.: Learning explanations that are hard to vary. In: Ninth International Conference on Learning Representations (ICLR 2021). Ninth International Conference on Learning Representations (ICLR 2021), Wien, Austria, 03. Mai 2021 - 07. Mai 2021. (2021)
132.
Konferenzbeitrag
Gondal, M.; Wüthrich, M.; Miladinovic, D.; Locatello, F.; Breidt, M.; Volchkov, V.; Akpo, J.; Bachem, O.; Schölkopf, B.; Bauer, S.: On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset. In: Advances in Neural Information Processing Systems 32 (NeurIPS 2019), S. 15661 - 15672 (Hg. Wallach, H.; Larochelle, H.; Beygelzimer, A.; d'Alché-Buc, F.; Fox, E. et al.). 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 09. Dezember 2019 - 13. Dezember 2019. Curran, Red Hook, NY, USA (2020)
133.
Konferenzbeitrag
Besserve, M.; Mehrjou, A.; Sun, R.; Schölkopf, B.: Counterfactuals uncover the modular structure of deep generative models. In: Eighth International Conference on Learning Representations (ICLR 2020). Eighth International Conference on Learning Representations (ICLR 2020), Addis Ababa, Ethiopia, 26. April 2020 - 30. April 2020. (2020)
134.
Konferenzbeitrag
Geiger, P.; Besserve, M.; Winkelmann, J.; Proissl, C.; Schölkopf, B.: Coordinating Users of Shared Facilities via Data-driven Predictive Assistants and Game Theory. In: 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), 49, S. 286 - 295. 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), Tel Aviv, Israel, 22. Juli 2019 - 25. Juli 2019. Curran, Red Hook, NY, USA (2019)
135.
Konferenzbeitrag
Gresele, L.; Rubenstein, P.; Mehrjou, A.; Locatello, F.; Schölkopf, B.: The Incomplete Rosetta Stone problem: Identifiability results for Multi-view Nonlinear ICA. In: 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), Bd. 115, 53, S. 296 - 313. 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), Tel Aviv, Israel, 22. Juli 2019 - 25. Juli 2019. (2019)
136.
Konferenzbeitrag
Besserve, M.; Sun, R.; Schölkopf, B.: Intrinsic disentanglement: an invariance view for deep generative models. In: ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models. ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models, Stockholm, Sweden, 14. Juli 2018 - 15. Juli 2018. (2018)
137.
Konferenzbeitrag
Loktyushin, A.; Ehses, P.; Schölkopf, B.; Scheffler, K.: Learning-based solution to phase error correction in T2*-weighted GRE scans. In: International Conference on Medical Imaging with Deep Learning (MIDL 2018), S. 1 - 3. International Conference on Medical Imaging with Deep Learning (MIDL 2018), Amsterdam, The Netherlands, 04. Juli 2018 - 06. Juli 2018. (2018)
138.
Konferenzbeitrag
Besserve, M.; Shajarisales, N.; Schölkopf, B.; Janzing, D.: Group invariance principles for causal generative models. In: International Conference on Artificial Intelligence and Statistics, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, S. 557 - 565 (Hg. Storkey , A.; Perez-Cruz, F.). 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018), Playa Blanca, Spain, 09. April 2018 - 11. April 2018. International Machine Learning Society, Madison, WI, USA (2018)
139.
Konferenzbeitrag
Loktyushin, A.; Schuler, C.; Scheffler, K.; Schölkopf, B.: Retrospective Motion Correction of Magnitude-Input MR Images. In: Machine Learning Meets Medical Imaging, S. 3 - 12 (Hg. Bhatia , K.K.). First International Workshop on Machine Learning Meets Medical Imaging (MLMMI 2015), held in conjunction with ICML 2015, Lille, France, 11. Juli 2015. IEEE, Piscataway, NJ, USA (2016)
140.
Konferenzbeitrag
Shajarisales, N.; Janzing, D.; Schölkopf, B.; Besserve, M.: Telling Cause from Effect in Deterministic Linear Dynamical Systems. In: International Conference on Machine Learning, 7-9 July 2015, Lille, France, S. 285 - 294 (Hg. Bach , F.; Blei, D.). 32nd International Conference on Machine Learning (ICML 2015), Lille, France. International Machine Learning Society, Madison, WI, USA (2015)
Esc