Publikationen von O Chapelle
Alle Typen
Konferenzbeitrag (21)
21.
Konferenzbeitrag
Estimating Predictive Variances with Kernel Ridge Regression. In: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment: First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, S. 56 - 77 (Hg. Quinonero-Candela, J.; Dagan, I.; Magnini, B.; D‘Alché-Buc, F.). First PASCAL Machine Learning Challenges Workshop (MLCW 2005), Southampton, UK, 11. April 2005 - 13. April 2005. Springer, Berlin, Germany (2006)
22.
Konferenzbeitrag
: The 2005 PASCAL Visual Object Classes Challenge. In: Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, S. 117 - 176 (Hg. Quiñonero-Candela, J.; Dagan, I.; Magnini, B.; d’Alché-Buc, F.). First PASCAL Machine Learning Challenges Workshop (MLCW 2005), Southampton, UK, 11. April 2005 - 13. April 2005. Springer, Berlin (2006)
23.
Konferenzbeitrag
An Analysis of the Anti-Learning Phenomenon for the Class Symmetric Polyhedron. In: Algorithmic Learning Theory: 16th International Conference, ALT 2005, Singapore, October 8-11, 2005, S. 78 - 92 (Hg. Jain, S.; Simon, H.; Tomita, E.). 16th International Conference on Algorithmic Learning Theory (ALT 2005), Singapore, 08. Oktober 2005 - 11. Oktober 2005. Springer, Berlin, Germany (2005)
24.
Konferenzbeitrag
Implicit Surface Modelling as an Eigenvalue Problem. In: ICML '05: 22nd international conference on Machine learning, S. 936 - 939 (Hg. Dzeroski, S.; De Raedt , L.; Wrobel, S.). 22nd International Conference on Machine Learning (ICML 2005), Bonn, Germany, 07. August 2005 - 11. August 2005. ACM Press, New York, NY, USA (2005)
25.
Konferenzbeitrag
A Machine Learning Approach to Conjoint Analysis. In: Advances in Neural Information Processing Systems 17, S. 257 - 264 (Hg. Saul, L.; Weiss, Y.; Bottou, L.). Eighteenth Annual Conference on Neural Information Processing Systems (NIPS 2004), Vancouver, BC, Canada, 13. Dezember 2004 - 16. Dezember 2004. MIT Press, Cambridge, MA, USA (2005)
26.
Konferenzbeitrag
Active Learning for Parzen Window Classifier. In: AISTATS 2005: Tenth International Workshop onArtificial Intelligence and Statistics, S. 49 - 56 (Hg. Cowell, R.; Ghahramani, Z.). Tenth International Workshop on Artificial Intelligence and Statistics (AI Statistics 2005), Barbados, 06. Januar 2005 - 08. Januar 2005. The Society for Artificial Intelligence and Statistics (2005)
27.
Konferenzbeitrag
Semi-Supervised Classification by Low Density Separation. In: AISTATS 2005: Tenth International Workshop onArtificial Intelligence and Statistics, S. 57 - 64 (Hg. Cowell, R.; Ghahramani, Z.). Tenth International Workshop on Artificial Intelligence and Statistics (AI Statistics 2005), Barbados, 06. Januar 2005 - 08. Januar 2005. The Society for Artificial Intelligence and Statistics (2005)
28.
Konferenzbeitrag
Schölkopf, B.). Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003), Vancouver, BC, Canada, 09. Dezember 2003 - 11. Dezember 2003. MIT Press, Cambridge, MA, USA (2004)
Measure Based Regularization. In: Advances in Neural Information Processing Systems 16, S. 1221 - 1228 (Hg. Thrun, S.; Saul, L.; 29.
Konferenzbeitrag
13, S. 142 - 148. 15th IEEE International Conference on Tools with Artificial Intelligence 2003, Sacramento, CA, USA, 05. November 2003. IEEE Operations Center, Piscataway, NJ, USA (2003)
Feature Selection for Support Vector Machines Using Genetic Algorithms. In: 15th IEEE International Conference on Tools with Artificial Intelligence, Bd. 30.
Konferenzbeitrag
Cluster Kernels for Semi-Supervised Learning. In: Advances in Neural Information Processing Systems 15, S. 585 - 592 (Hg. Becker, S.; Thrun, S.; Obermayer, K.). Sixteenth Annual Conference on Neural Information Processing Systems (NIPS 2002), Vancouver, BC, Canada, 09. Dezember 2002 - 14. Dezember 2002. MIT Press, Cambridge, MA, USA (2003)
31.
Konferenzbeitrag
Kernel Dependency Estimation. In: Advances in Neural Information Processing Systems 15, S. 873 - 880 (Hg. Becker, S.; Thrun, S.; Obermayer, K.). Sixteenth Annual Conference on Neural Information Processing Systems (NIPS 2002), Vancouver, BC, Canada, 09. Dezember 2002 - 14. Dezember 2002. MIT Press, Cambridge, MA, USA (2003)
32.
Konferenzbeitrag
Semi-Supervised Learning through Principal Directions Estimation. In: ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning & Data Mining, S. 1 - 7. ICML 2003 Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning & Data Mining, Washington, DC, USA, 21. August 2003. (2003)
33.
Konferenzbeitrag
Incorporating Invariances in Non-Linear Support Vector Machines. In: Advances in Neural Information Processing Systems 14, S. 609 - 616 (Hg. Dietterich, T.; Becker, S.; Ghahramani, Z.). Fifteenth Annual Neural Information Processing Systems Conference (NIPS 2001), Vancouver, BC, Canada, 03. Dezember 2001 - 08. Dezember 2001. MIT Press, Cambridge, MA, USA (2002)
Vortrag (2)
34.
Vortrag
A taxonomy of semi-supervised learning algorithms. Yahoo!, Sunnyvale, CA, USA (2005)
35.
Vortrag
Some thoughts about Gaussian Processes. NIPS 2005 Workshop on Open Problems in Gaussian Processes for Machine Learning, Whistler, BC, Canada (2005)
Hochschulschrift - Doktorarbeit (1)
36.
Hochschulschrift - Doktorarbeit
Support Vector Machines: Induction Principle, Adaptive Tuning and Prior Knowledge. Dissertation, 180 S., Universit ́e Pierre et Marie Curie: Paris VI, Paris, France (2004)
Bericht (6)
37.
Bericht
165). Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2007), 12 S.
Learning with Transformation Invariant Kernels (Technical Report of the Max Planck Institute for Biological Cybernetics, 38.
Bericht
147). Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2006), 15 S.
Training a Support Vector Machine in the Primal (Technical Report of the Max Planck Institute for Biological Cybernetics, 39.
Bericht
137). Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2004), 9 S.
Object categorization with SVM: kernels for local features (Technical Report of the Max Planck Institute for Biological Cybernetics, 40.
Bericht
98). Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2002), 10 S.
Kernel Dependency Estimation (Technical Report of the Max Planck Institute for Biological Cybernetics,