Publikationen von P Dayan

Buchkapitel (14)

Buchkapitel
Dayan, P.: Exploration from Generalization Mediated by Multiple Controllers. In: Intrinsically Motivated Learning in Natural and Artificial Systems, S. 73 - 91 (Hg. Baldassarre, G.; Mirolli, M.). Springer, Berlin, Germany (2013)
Buchkapitel
Dayan, P.: Models of Value and Choice. In: Neuroscience of Preference and Choice: Cognitive and Neural Mechanisms, 2, S. 33 - 52 (Hg. Dolan, R.; Sharot, T.). Elsevier/Academic Press, London, UK (2012)
Buchkapitel
Daw, N.; Courville, A.; Dayan, P.: Semi-rational models of conditioning: The case of trial order. In: The Probabilistic Mind: Prospects for Bayesian cognitive science$, 19, S. 427 - 448 (Hg. Chater, N.; Oaksford, M.). Oxford University Press, Oxford, UK (2008)
Buchkapitel
Platt, M.; Dayan, P.; Dehaene, S.; McCabe, H.; Menzel, R.; Phelps, E.; Plassmann, H.; Ratcliff, R.; Shadlen, M.; Singer, W.: Neuronal Correlates of Decision Making. In: Better than conscious?: decision making, the human mind, and implications for institutions, 6 (Hg. Engel, C.; Singer, W.). MIT Press, Cambridge, MA, USA (2008)
Buchkapitel
Daw, N.; Niv, Y.; Dayan, P.: Actions, policies, values, and the basal ganglia. In: Recent Breakthroughs in Basal Ganglia Research, 8, S. 91 - 106 (Hg. Bezard, E.). Nova Science Publishers, Hauppauge, NY, USA (2006)
Buchkapitel
Dayan, P.: Levels of Analysis in Neural Modeling. In: Encyclopedia of Cognitive Science, 2 Aufl. (Hg. Nadel, L.). Wiley, Chichester, UK (2005)
Buchkapitel
Dayan, P.; Watkins, C.: Reinforcement Learning. In: Encyclopedia of Cognitive Science, Bd. 3 (Hg. Nadel, L.). Wiley, Chichester, UK (2005)
Buchkapitel
Dayan, P.: Helmholtz machines and wake-sleep learning. In: The Handbook of Brain Theory and Neural Networks, 2. Aufl., S. 522 - 524 (Hg. Arbib, M.). MIT Press, Cambridge, MA, USA (2003)
Buchkapitel
Schraudolph, N.; Dayan, P.; Sejnowski, T.: Learning to Evaluate Go Positions via Temporal Difference Methods. In: Computational Intelligence in Games, S. 77 - 98 (Hg. Baba, N.; Jain, L.). Physica Verlag, Heidelberg, Germany (2001)
Buchkapitel
Dayan, P.: Unsupervised Learning. In: The MIT Encyclopedia of the Cognitive Sciences (Hg. Wilson, R.; Keil, F.). MIT Press, Cambridge, MA, USA (1999)
Buchkapitel
Montague, P.; Dayan, P.: Neurobiological Modeling: Squeezing Top Down to Meet Bottom Up. In: A Companion to Cognitive Science, S. 526 - 542 (Hg. Bechtel, W.; Graham, G.). Blackwell, Malden, MA, USA (1998)
Buchkapitel
Oberlander, J.; Dayan, P.: Altered states and virtual beliefs. In: Connectionism, Concepts and Folk Psychology: The Legacy of Alan Turing Vol. 2, S. 101 - 114 (Hg. Millican, P.; Clark, A.). Clarendon Press, Oxford, UK (1996)

Konferenzband (1)

Konferenzband
Exploration and Curiosity in Robot Learning and Inference (Dagstuhl Reports, 1). Dagstuhl Seminar 11131, Dagstuhl, Germany, 27. März 2011 - 01. April 2011. (2011)

Konferenzbeitrag (87)

Konferenzbeitrag
Bruijns, S.; The International Brain Laboratory; Dayan, P.: Understanding Learning Trajectories With Infinite Hidden Markov Models. In: 2022 Conference on Cognitive Computational Neuroscience, P-1.19, S. 64 - 66. Conference on Cognitive Computational Neuroscience (CCN 2022), San Francisco, CA, USA, 25. August 2022 - 28. August 2022. (2022)
Konferenzbeitrag
Khajehnejad, M.; Habibollahi, F.; Nock, R.; Arabzadeh, E.; Dayan, P.; Dezfouli, A.: Neural Network Poisson Models for Behavioural and Neural Spike Train Data. In: International Conference on Machine Learning, 17-23 July 2022, Baltimore, Maryland, USA, S. 10974 - 10996 (Hg. Chaudhuri, K.; Jegelka, S.; Song, L.; Szepesvari, C.; Niu, G. et al.). Thirty-ninth International Conference on Machine Learning (ICML 2022), Baltimore, MD, USA, 17. Juli 2022 - 23. Juli 2022. (2022)
Konferenzbeitrag
Renz, F.; Grossman, S.; Dayan, P.; Doeller, C.; Schuck, N.: Representation learning facilitates different levels of generalization. In: 2022 Conference on Cognitive Computational Neuroscience, P-2.66, S. 460 - 462. Conference on Cognitive Computational Neuroscience (CCN 2022), San Francisco, CA, USA, 25. August 2022 - 28. August 2022. (2022)
Konferenzbeitrag
Bröker, F.; Roads, B.; Dayan, P.; Love, B.: Teaching categories to human semi-supervised learners. In: 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022), 2.8, S. 122 - 125. 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022), Providence, RI, USA, 08. Juni 2022 - 11. Juni 2022. (2022)
Konferenzbeitrag
Dayan, P.; Gagne, C.: Two steps to risk sensitivity. In: Advances in Neural Information Processing Systems 34: 35th Conference on Neural Information Processing Systems (NeurIPS 2021), S. 22209 - 22220 (Hg. Ranzato, M.; Beygelzimer, A.; Liang, P.; Vaughan, J.; Dauphin, Y.). Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021), 06. Dezember 2021 - 14. Dezember 2021. Curran, Red Hook, NY, USA (2022)
Konferenzbeitrag
Wise, T.; Charpentier, C.; Dayan, P.; Mobbs, D.: Modeling the mind of a predator: Interactive cognitive maps enable avoidance of dynamic threats. In: 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022), 1.49, S. 32 - 33. 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022), Providence, RI, USA, 08. Juni 2022 - 11. Juni 2022. (2022)
Konferenzbeitrag
Gagne, C.; Dayan, P.: Catastrophe, Compounding & Consistency in Choice. In: Workshop on Human and Machine Decisions @ NeurIPS 2021 (WHMD 2021). Workshop on Human and Machine Decisions @ NeurIPS 2021 (WHMD 2021), 14. Dezember 2021. (2021)
Zur Redakteursansicht