Suchergebnisse

Konferenzbeitrag (9)

21.
Konferenzbeitrag
Görür, D.; Rasmussen, C.; Tolias, A.; Sinz, F.; Logothetis, N.: Modelling Spikes with Mixtures of Factor Analysers. In: Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, August 30 - September 1, 2004, S. 391 - 398 (Hg. Rasmussen, C.; Bülthoff, H.; Schölkopf, B.; Giese, M.). 26th Annual Symposium of the German Association for Pattern Recognition (DAGM 2004), Tübingen, Germany, 30. August 2004 - 01. September 2004. Springer, Berlin, Germany (2004)
22.
Konferenzbeitrag
Sinz, F.; Candela, J.; BakIr, G.; Rasmussen, C.; Franz, M.: Learning Depth From Stereo. In: Pattern Recognition: 26th DAGM Symposium, Tübingen, Germany, August 30 - September 1, 2004, S. 245 - 252 (Hg. Rasmussen, C.; Bülthoff, H.; Schölkopf, B.; Giese, M.). 26th Annual Symposium of the German Association for Pattern Recognition (DAGM 2004), Tübingen, Germany, 30. August 2004 - 01. September 2004. Springer, Berlin, Germany (2004)

Vortrag (1)

23.
Vortrag
Sinz, F.: Contrast Gain Control in Natural Image Representations. UCL Gatsby Computational Neuroscience Unit, London, UK (2010)

Poster (10)

24.
Poster
Cadwell, C.; Jiang, X.; Sinz, F.; Berens, P.; Fahey, P.; Yatsenko, D.; Froudarakis, E.; Ecker, A.; Cotton, R.; Tolias, A.: Cell Lineage Directs teh Precise Assembly of Excitatory Neocortical Circuits. AREADNE 2016: Research in Encoding And Decoding of Neural Ensembles, Santorini, Greece (2016)
25.
Poster
Reimer, J.; Yatsenko, D.; Ecker, A.; Walker, E.; Sinz, F.; Berens, P.; Hoenselaar, A.; Cotton, R.; Siapas, A.; Tolias, A.: DataJoint: Managing Big Scientific Data Using Matlab or Python. AREADNE 2016: Research in Encoding And Decoding of Neural Ensembles, Santorini, Greece (2016)
26.
Poster
Froudarakis, A.; Berens, P.; Ecker, A.; Cotton, R.; Sinz, F.; Yatsenko, D.; Saggau, P.; Bethge, M.; Tolias, A.: Population Code in Mouse V1 Facilities Read-out of Natural Scenes through Increased Sparseness. AREADNE 2014: Research in Encoding and Decoding of Neural Ensembles, Santorini, Greece (2014)
27.
Poster
Sinz, F.; Bethge, M.: Temporal adaptation enhances efficient contrast gain control on natural images. Bernstein Conference 2012, München, Germany (2012)
28.
Poster
Hosseini, R.; Sinz, F.; Bethge, M.: New Estimate for the Redundancy of Natural Images. Bernstein Conference on Computational Neuroscience (BCCN 2010), Berlin, Germany (2010)
29.
Poster
Theis, L.; Gerwinn, S.; Sinz, F.; Bethge, M.: Likelihood Estimation in Deep Belief Networks. Bernstein Conference on Computational Neuroscience (BCCN 2010), Berlin, Germany (2010)
30.
Poster
Sinz, F.; Bethge, M.: A new class of distributions for natural images generalizing independent subspace analysis. Bernstein Conference on Computational Neuroscience (BCCN 2009), Frankfurt a.M., Germany (2009)
31.
Poster
Sinz, F.; Bethge, M.: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction in Natural Images. Bernstein Symposium 2008, München, Germany (2008)
32.
Poster
Sinz, F.; Bethge, M.: Redundancy Reduction in Natural Images: Quantifying the Effect of Orientation Selectivity and Contrast Gain Control. Gordon Research Conference: Sensory Coding & The Natural Environment 2008, Lucca, Italy (2008)
33.
Poster
Sinz, F.; Franz, M.: Learning Depth. 7th Tübingen Perception Conference (TWK 2004), Tübingen, Germany (2004)

Hochschulschrift - Diplom (1)

34.
Hochschulschrift - Diplom
Sinz, F.: A priori Knowledge from Non-Examples. Diplom, 141 S., Eberhard-Karls-Universität, Tübingen, Germany (2007)

Bericht (3)

35.
Bericht
Sinz, F.; Bethge, M.: How Much Can Orientation Selectivity and Contrast Gain Control Reduce the Redundancies in Natural Images (Technical Report of the Max Planck Institute for Biological Cybernetics, 169). Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2008), 28 S.
36.
Bericht
Sinz, F.; Schölkopf, B.: Minimal Logical Constraint Covering Sets (Technical Report of the Max Planck Institute for Biological Cybernetics, 155). Max Planck Institute for Biological Cybernetics, Tübingen, Germany (2006), 12 S.
37.
Bericht
Sinz, F.: Kamerakalibrierung und Tiefenschätzung: Ein Vergleich von klassischer Bündelblockausgleichung und statistischen Lernalgorithmen. Wilhelm-Schickard-Institut für Informatik, Lehrstuhl für technische Informatik, Tübingen, Germany (2004), 50 S.
Zur Redakteursansicht