
Publications of A Smola
All genres
Journal Article (19)
1.
Journal Article
13, pp. 723 - 773 (2012)
A Kernel Two-Sample Test. Journal of Machine Learning Research 2.
Journal Article
13, pp. 1393 - 1434 (2012)
Feature Selection via Dependence Maximization. Journal of Machine Learning Research 3.
Journal Article
3 (5), pp. 302 - 318 (2010)
Discriminative frequent subgraph mining with optimality guarantees. Statistical Analysis and Data Mining 4.
Journal Article
69 (7-9), pp. 721 - 729 (2006)
Kernel extrapolation. Neurocomputing 5.
Journal Article
6, pp. 2075 - 2129 (2005)
Kernel Methods for Measuring Independence. The Journal of Machine Learning Research 6.
Journal Article
6, pp. 1043 - 1071 (2005)
Learning the Kernel with Hyperkernels. The Journal of Machine Learning Research 7.
Journal Article
21 (Supplement 1), pp. i47 - i56 (2005)
Protein function prediction via graph kernels. Bioinformatics 8.
Journal Article
18 (2), p. 205 - 205 (2005)
Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural networks 9.
Journal Article
14 (3), pp. 199 - 222 (2004)
A Tutorial on Support Vector Regression. Statistics and Computing 10.
Journal Article
17 (1), pp. 127 - 141 (2004)
Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural networks 11.
Journal Article
14 (3), pp. 597 - 605 (2003)
Classification in a Normalized Feature Space using Support Vector Machines. IEEE Transactions on Neural Networks 12.
Journal Article
25 (5), pp. 623 - 628 (2003)
Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 13.
Journal Article
13 (7), pp. 1443 - 1471 (2001)
Estimating the support of a high-dimensional distribution. Neural computation 14.
Journal Article
12 (5), pp. 1207 - 1245 (2000)
New Support Vector Algorithms. Neural computation 15.
Journal Article
10 (5), pp. 1000 - 1017 (1999)
Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 16.
Journal Article
14 (3), pp. 154 - 163 (1999)
Lernen mit Kernen: Support-Vektor-Methoden zur Analyse hochdimensionaler Daten. Informatik - Forschung und Entwicklung 17.
Journal Article
22 (1-2), pp. 211 - 231 (1998)
On a Kernel-Based Method for Pattern Recognition, Regression, Approximation, and Operator Inversion. Algorithmica 18.
Journal Article
10 (5), pp. 1299 - 1319 (1998)
Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural computation 19.
Journal Article
11 (4), pp. 637 - 649 (1998)
The connection between regularization operators and support vector kernels. Neural networks Book (2)
20.
Book
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA (2002), 626 pp.