
Publications of O Bousquet
All genres
Journal Article (17)
1.
Journal Article
21 (1), pp. 272 - 300 (2009)
Prototype Classification: Insights from Machine Learning. Neural computation 2.
Journal Article
36 (2), pp. 555 - 586 (2008)
Consistency of Spectral Clustering. The Annals of Statistics 3.
Journal Article
21 (3), pp. 337 - 340 (2006)
Comment. Statistical Science 4.
Journal Article
66 (2-3), pp. 259 - 294 (2006)
Statistical Properties of Kernel Principal Component Analysis. Machine Learning 5.
Journal Article
6, pp. 2075 - 2129 (2005)
Kernel Methods for Measuring Independence. The Journal of Machine Learning Research 6.
Journal Article
71 (3), pp. 333 - 359 (2005)
Maximal Margin Classification for Metric Spaces. Journal of Computer and System Sciences 7.
Journal Article
33 (4), pp. 1497 - 1537 (2005)
Local Rademacher Complexities. The Annals of Statistics 8.
Journal Article
9, pp. 323 - 375 (2005)
Theory of Classification: A Survey of Some Recent Advances. ESAIM: Probability and Statistics 9.
Journal Article
33 (2), pp. 514 - 560 (2005)
Moment Inequalities for Functions of Independent Random Variables. Annals of Probability 10.
Journal Article
5, pp. 669 - 695 (2004)
Distance-Based Classification with Lipschitz Functions. The Journal of Machine Learning Research 11.
Journal Article
21 (3), pp. 57 - 65 (2004)
Kernel Methods and their Potential Use in Signal Processing. IEEE Signal Processing Magazine 12.
Journal Article
36 (2), pp. 489 - 531 (2004)
Statistical Performance of Support Vector Machines. The Annals of Statistics 13.
Journal Article
5, pp. 293 - 323 (2004)
A Compression Approach to Support Vector Model Selection. The Journal of Machine Learning Research 14.
Journal Article
55 (2), pp. 371 - 389 (2003)
New Approaches to Statistical Learning Theory. Annals of the Institute of Statistical Mathematics 15.
Journal Article
19 (6), pp. 764 - 771 (2003)
Feature selection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics 16.
Journal Article
3, pp. 363 - 396 (2002)
Tracking a Small Set of Experts by Mixing Past Posteriors. The Journal of Machine Learning Research 17.
Journal Article
2, pp. 499 - 526 (2002)
Stability and Generalization. The Journal of Machine Learning Research Book Chapter (2)
18.
Book Chapter
Bakır, G.; Hofmann, T.; Schölkopf, B.; Smola, A.; Taskar, B. et al.). MIT Press, Cambridge, MA, USA (2007)
Joint Kernel Maps. In: Predicting Structured Data, pp. 67 - 84 (Eds. 19.
Book Chapter
56, pp. 213 - 247 (Eds. Giné, E.; Houdré, C.; Nualart, D.). Birkhäuser, Basel, Switzerland (2003)
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method. In: Stochastic Inequalities and Applications, Vol. Proceedings (1)
20.
Proceedings
3176). Machine Learning Summer School (MLSS 2003), Canberra, Australia, February 02, 2004 - February 14, 2004. Springer, Berlin, Germany (2004), 240 pp.
Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003 (Lecture Notes in Computer Science,