Publications of G Rätsch
All genres
Journal Article (17)
1.
Journal Article
11, pp. 1799 - 1802 (2010)
The SHOGUN Machine Learning Toolbox. Journal of Machine Learning Research 2.
Journal Article
2010, pp. 1 - 11 (2010)
Statistical Tests for Detecting Differential RNA-Transcript Expression from Read Counts. Nature Precedings 3.
Journal Article
: mGene: Accurate SVM-based gene finding with an application to nematode genomes. Genome Research 19 (11), pp. 2133 - 2143 (2009)
4.
Journal Article
37 (Supplement 2), pp. W312 - W316 (2009)
mGene.web: a web service for accurate computational gene finding. Nucleic Acids Research (London) 5.
Journal Article
21 (1), pp. 272 - 300 (2009)
Prototype Classification: Insights from Machine Learning. Neural computation 6.
Journal Article
4 (10), e1000173 (2008)
Support Vector Machines and Kernels for Computational Biology. PLoS Computational Biology 7.
Journal Article
9 (7), R112, pp. 1 - 16 (2008)
At-TAX: A Whole Genome Tiling Array Resource for Developmental Expression Analysis and Transcript Identification in Arabidopsis thaliana. Genome Biology 8.
Journal Article
: The Need for Open Source Software in Machine Learning. The Journal of Machine Learning Research 8, pp. 2443 - 2466 (2007)
9.
Journal Article
: Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana. Science 317 (5836), pp. 338 - 342 (2007)
10.
Journal Article
23 (15), pp. 1892 - 1900 (2007)
PALMA: mRNA to Genome Alignments using Large Margin Algorithms. Bioinformatics 11.
Journal Article
3 (2 ), pp. 0313 - 0322 (2007)
Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning. PLoS Computational Biology 12.
Journal Article
7, pp. 1531 - 1565 (2006)
Large Scale Multiple Kernel Learning. The Journal of Machine Learning Research 13.
Journal Article
14 (6), pp. 737 - 744 (2005)
Image Reconstruction by Linear Programming. IEEE Transactions on Image Processing 14.
Journal Article
6, pp. 995 - 1018 (2005)
Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. The Journal of Machine Learning Research 15.
Journal Article
25 (5), pp. 623 - 628 (2003)
Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 16.
Journal Article
24 (9), pp. 1184 - 1199 (2002)
Constructing Boosting algorithms from SVMs: an application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 17.
Journal Article
10 (5), pp. 1000 - 1017 (1999)
Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks Book Chapter (1)
18.
Book Chapter
An Introduction to Kernel-Based Learning Algorithms. In: Handbook of neural network signal processing: Neural network signal processing, 4, pp. 95 - 134 (Eds. Hu, Y.; Hwang, J.-N.; Perry, S.). CRC Press, Boca Raton, FL, USA (2002)
Proceedings (4)
19.
Proceedings
8). NIPS Workshop on New Problems and Methods in Computational Biology 2006, Whistler, Canada, December 08, 2006. (2007)
NIPS workshop on New Problems and Methods in Computational Biology (BMC Bioinformatics, 20.
Proceedings
Machine Learning in Computational Biology. NIPS 2007 Workshop: Machine Learning in Computational Biology (MLCB 2007), Whistler, Canada, December 07, 2007 - December 08, 2007. (2007)