Publications of G Rätsch

Journal Article (17)

1.
Journal Article
Sonnenburg, S.; Rätsch, G.; Henschel, S.; Widmer, C.; Behr, J.; Zien, A.; De Bona, F.; Binder, A.; Gehl, C.; Franc, V.: The SHOGUN Machine Learning Toolbox. Journal of Machine Learning Research 11, pp. 1799 - 1802 (2010)
2.
Journal Article
Stegle, O.; Drewe, P.; Bohnert, R.; Borgwardt, K.; Rätsch, G.: Statistical Tests for Detecting Differential RNA-Transcript Expression from Read Counts. Nature Precedings 2010, pp. 1 - 11 (2010)
3.
Journal Article
Schweikert, G.; Zeller, G.; Behr, J.; Dieterich, C.; Ong, C.; Philips, P.; De Bona, F.; Hartmann, L.; Bohlen, A.; Krüger, N. et al.: mGene: Accurate SVM-based gene finding with an application to nematode genomes. Genome Research 19 (11), pp. 2133 - 2143 (2009)
4.
Journal Article
Schweikert, G.; Behr, J.; Zien, A.; Zeller, G.; Ong, C.; Sonnenburg, S.; Rätsch, G.: mGene.web: a web service for accurate computational gene finding. Nucleic Acids Research (London) 37 (Supplement 2), pp. W312 - W316 (2009)
5.
Journal Article
Graf, A.; Bousquet, O.; Rätsch, G.; Schölkopf, B.: Prototype Classification: Insights from Machine Learning. Neural computation 21 (1), pp. 272 - 300 (2009)
6.
Journal Article
Ben-Hur, A.; Ong, C.; Sonnenburg, S.; Schölkopf, B.; Rätsch, G.: Support Vector Machines and Kernels for Computational Biology. PLoS Computational Biology 4 (10), e1000173 (2008)
7.
Journal Article
Laubinger, S.; Zeller, G.; Henz, S.; Sachsenberg, T.; Widmer, C.; Naouar, N.; Vuylsteke, M.; Schölkopf, B.; Rätsch, G.; Weigel, D.: At-TAX: A Whole Genome Tiling Array Resource for Developmental Expression Analysis and Transcript Identification in Arabidopsis thaliana. Genome Biology 9 (7), R112, pp. 1 - 16 (2008)
8.
Journal Article
Sonnenburg, S.; Braun, M.; Ong, C.; Bengio, S.; Bottou, L.; Holmes , G.; LeCun, Y.; Müller, K.-R.; Pereira, F.; Rasmussen, C. et al.: The Need for Open Source Software in Machine Learning. The Journal of Machine Learning Research 8, pp. 2443 - 2466 (2007)
9.
Journal Article
Clark, R.; Schweikert, G.; Toomajian, C.; Ossowski , S.; Zeller, G.; Shinn, P.; Warthmann, N.; Hu, T.; Fu, G.; Hinds, D. et al.: Common Sequence Polymorphisms Shaping Genetic Diversity in Arabidopsis thaliana. Science 317 (5836), pp. 338 - 342 (2007)
10.
Journal Article
Schulze, U.; Hepp, B.; Ong, C.; Rätsch, G.: PALMA: mRNA to Genome Alignments using Large Margin Algorithms. Bioinformatics 23 (15), pp. 1892 - 1900 (2007)
11.
Journal Article
Rätsch, G.; Sonnenburg, S.; Srinivasan, J.; Witte, H.; Müller, K.-R.; Sommer, R.-J.; Schölkopf, B.: Improving the Caenorhabditis elegans Genome Annotation Using Machine Learning. PLoS Computational Biology 3 (2 ), pp. 0313 - 0322 (2007)
12.
Journal Article
Sonnenburg, S.; Rätsch, G.; Schäfer, C.; Schölkopf, B.: Large Scale Multiple Kernel Learning. The Journal of Machine Learning Research 7, pp. 1531 - 1565 (2006)
13.
Journal Article
Tsuda, K.; Rätsch, G.: Image Reconstruction by Linear Programming. IEEE Transactions on Image Processing 14 (6), pp. 737 - 744 (2005)
14.
Journal Article
Tsuda, K.; Rätsch, G.; Warmuth , M.: Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection. The Journal of Machine Learning Research 6, pp. 995 - 1018 (2005)
15.
Journal Article
Mika, S.; Rätsch, G.; Weston, J.; Schölkopf, B.; Smola, A.; Müller, K.-R.: Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (5), pp. 623 - 628 (2003)
16.
Journal Article
Rätsch, G.; Mika, S.; Schölkopf, B.; Müller, K.-R.: Constructing Boosting algorithms from SVMs: an application to one-class classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 24 (9), pp. 1184 - 1199 (2002)
17.
Journal Article
Schölkopf, B.; Mika, S.; Burges, C.; Knirsch, P.; Müller, K.-R.; Rätsch, G.; Smola, A.: Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks 10 (5), pp. 1000 - 1017 (1999)

Book Chapter (1)

18.
Book Chapter
Müller, K.; Mika, S.; Rätsch, G.; Tsuda, K.; Schölkopf, B.: An Introduction to Kernel-Based Learning Algorithms. In: Handbook of neural network signal processing: Neural network signal processing, 4, pp. 95 - 134 (Eds. Hu, Y.; Hwang, J.-N.; Perry, S.). CRC Press, Boca Raton, FL, USA (2002)

Proceedings (4)

19.
Proceedings
Chechik, G.; Leslie, C.; Noble, W.; Rätsch, G.; Morris, Q.; Tsuda, K. (Eds.): NIPS workshop on New Problems and Methods in Computational Biology (BMC Bioinformatics, 8). NIPS Workshop on New Problems and Methods in Computational Biology 2006, Whistler, Canada, December 08, 2006. (2007)
20.
Proceedings
Machine Learning in Computational Biology. NIPS 2007 Workshop: Machine Learning in Computational Biology (MLCB 2007), Whistler, Canada, December 07, 2007 - December 08, 2007. (2007)
Esc