Search results

Journal Article (7)

1.
Journal Article
Seeger, M.; Nickisch, H.: Large Scale Bayesian Inference and Experimental Design for Sparse Linear Models. SIAM Journal on Imaging Sciences 4 (1), pp. 166 - 199 (2011)
2.
Journal Article
Seeger, M.; Nickisch, H.; Pohmann, R.; Schölkopf, B.: Optimization of k-Space Trajectories for Compressed Sensing by Bayesian Experimental Design. Magnetic Resonance in Medicine 63 (1), pp. 116 - 126 (2010)
3.
Journal Article
Nguyen-Tuong, D.; Seeger, M.; Peters, J.: Model Learning with Local Gaussian Process Regression. Advanced Robotics 23 (15), pp. 2015 - 2034 (2009)
4.
Journal Article
Seeger, M.: Cross-validation Optimization for Large Scale Structured Classification Kernel Methods. The Journal of Machine Learning Research 9, pp. 1147 - 1178 (2008)
5.
Journal Article
Seeger, M.; Kakade, S.; Foster, D.: Information Consistency of Nonparametric Gaussian Process Methods. IEEE Transactions on Information Theory 54 (5), pp. 2376 - 2382 (2008)
6.
Journal Article
Seeger, M.: Bayesian Inference and Optimal Design for the Sparse Linear Model. Journal of Machine Learning Research 9, pp. 759 - 813 (2008)
7.
Journal Article
Steinke, F.; Seeger, M.; Tsuda, K.: Experimental design for efficient identification of gene regulatory networks using sparse Bayesian models. BMC Systems Biology 1, 51, pp. 1 - 15 (2007)

Book Chapter (2)

8.
Book Chapter
Nguyen-Tuong, D.; Seeger, M.; Peters, J.: Real-Time Local GP Model Learning. In: From Motor Learning to Interaction Learning in Robots, pp. 193 - 207 (Eds. Sigaud, O.; Peters, J.). Springer, Berlin, Germany (2010)
9.
Book Chapter
Seeger, M.: A Taxonomy for Semi-Supervised Learning Methods. In: Semi-Supervised Learning, 1, pp. 15 - 31 (Eds. Chapelle, O.; Schölkopf, B.; Zien, A.). MIT Press, Cambridge, MA, USA (2006)

Conference Paper (12)

10.
Conference Paper
Seeger, M.; Nickisch, H.: Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference. In: JMLR Workshop and Conference Proceedings, Vol. 15, pp. 652 - 660 (Eds. Gordon, G.; Dunson, D.; Dudik, M.). 14th International Conference on Artificial Intelligence and Statistics (AISTATS 2011), Fort Lauderdale, FL, USA, April 11, 2011 - April 13, 2011. MIT Press, Cambridge, MA, USA (2011)
11.
Conference Paper
Nguyen-Tuong, D.; Seeger, M.; Peters, J.: Local Gaussian Process Regression for Real Time Online Model Learning and Control. In: Advances in neural information processing systems 21, pp. 1193 - 1200 (Eds. Koller, D.; Schuurmans, D.; Bengio, Y.; Bottou, L.). Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS 2008), Vancouver, BC, Canada, December 08, 2008 - December 10, 2008. Curran, Red Hook, NY, USA (2009)
12.
Conference Paper
Nickisch, H.; Seeger, M.: Convex variational Bayesian inference for large scale generalized linear models. In: ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 761 - 768 (Eds. Danyluk, A.; Bottou, L.; Littman, M.). 26th International Conference on Machine Learning, Montreal, Canada, June 14, 2009 - June 18, 2009. ACM Press, New York, NY, USA (2009)
13.
Conference Paper
Seeger, M.; Nickisch, H.; Pohmann, R.; Schölkopf, B.: Bayesian Experimental Design of Magnetic Resonance Imaging Sequences. In: Advances in neural information processing systems 21, pp. 1441 - 1448 (Eds. Koller, D.; Schuurmans, D.; Bengio, Y.; Bottou, L.). Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS 2008), Vancouver, BC, Canada, December 08, 2008 - December 10, 2008. Curran, Red Hook, NY, USA (2009)
14.
Conference Paper
Seeger, M.; Sra, S.; Cunningham, J.: Workshop summary: Numerical mathematics in machine learning. In: ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning, 9, pp. 1 - 9 (Eds. Danyluk, A.; Bottou, L.; Littman, M.). 26th Annual International Conference on Machine Learning (ICML 2009), Montreal, Quebec, Canada, June 14, 2009 - June 18, 2009. ACM Press, New York, NY, USA (2009)
15.
Conference Paper
Gerwinn, S.; Macke, J.; Seeger, M.; Bethge, M.: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior. In: Advances in Neural Information Processing Systems 20: 21st Annual Conference on Neural Information Processing Systems 2007, pp. 529 - 536 (Eds. Platt, C.; Koller, D.; Singer, Y.; Roweis, S.). Twenty-First Annual Conference on Neural Information Processing Systems (NIPS 2007), Vancouver, BC, Canada, December 03, 2007 - December 06, 2007. Curran, Red Hook, NY, USA (2008)
16.
Conference Paper
Seeger, M.; Nickisch, H.: Compressed Sensing and Bayesian Experimental Design. In: ICML '08: Proceedings of the 25th international conference on Machine, pp. 912 - 919 (Eds. Cohen, W.; McCallum, A.; Roweis, S.). 25th International Conference on Machine Learning (ICML 2008), Helsinki, Finland, July 05, 2008 - July 09, 2008. ACM Press, New York, NY, USA (2008)
17.
Conference Paper
Nguyen-Tuong, D.; Seeger, M.; Peters, J.: Computed Torque Control with Nonparametric Regression Models. In: 2008 American Control Conference, pp. 212 - 217. American Control Conference (ACC 2008), Seattle, WA, USA, June 11, 2008 - June 13, 2008. IEEE, Piscataway, NJ, USA (2008)
18.
Conference Paper
Nguyen-Tuong, D.; Peters, J.; Seeger, M.; Schölkopf, B.: Learning Inverse Dynamics: A Comparison. In: Advances in computational intelligence and learning: 16th European Symposium on Artificial Neural Networks, pp. 13 - 18 (Ed. Verleysen, M.). 16th European Symposium on Artificial Neural Networks (ESANN 2008), Bruges, Belgium, April 23, 2008 - April 25, 2008. d-side, Evere, Belgium (2008)
19.
Conference Paper
Seeger, M.: Cross-Validation Optimization for Large Scale Hierarchical Classification Kernel Methods. In: Advances in Neural Information Processing Systems 19, pp. 1233 - 1240 (Eds. Schölkopf, B.; Platt, J.; Hoffman, T.). Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), Vancouver, BC, Canada, December 04, 2006 - December 07, 2006. MIT Press, Cambridge, MA, USA (2007)
20.
Conference Paper
Seeger, M.; Gerwinn, S.; Bethge, M.: Bayesian Inference for Sparse Generalized Linear Models. In: Machine Learning: ECML 2007: 18th European Conference on Machine Learning, Warsaw, Poland, September 17-21, 2007, pp. 298 - 309 (Eds. Kok, N.; Koronacki, J.; Lopez de Mantaras, R.; Matwin, S.; Mladenic, D. et al.). 18th European Conference on Machine Learning (ECML 2007), Warsaw, Poland, September 17, 2007 - September 21, 2007. Springer, Berlin, Germany (2007)
Go to Editor View