Suchergebnisse

Zeitschriftenartikel (12)

  1. 1.
    Zeitschriftenartikel
    Rasmussen, C.; Nickisch, H.: Gaussian Processes for Machine Learning (GPML) Toolbox. The Journal of Machine Learning Research 11, S. 3011 - 3015 (2010)
  2. 2.
    Zeitschriftenartikel
    Görür, D.; Rasmussen, C.: Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution. Journal of Computer Science and Technology 25 (4), S. 653 - 664 (2010)
  3. 3.
    Zeitschriftenartikel
    Lázaro-Gredilla, M.; Quiñonero-Candela, J.; Rasmussen, C.; Figueiras-Vidal, A.: Sparse Spectrum Gaussian Process Regression. Journal of Machine Learning Research 11, S. 1865 - 1881 (2010)
  4. 4.
    Zeitschriftenartikel
    Rasmussen, C.; de la Cruz , B.; Ghahramani, Z.; Wild, D.: Modeling and Visualizing Uncertainty in Gene Expression Clusters using Dirichlet Process Mixtures. IEEE/ACM Transactions on Computational Biology and Bioinformatics 6 (4), S. 615 - 628 (2009)
  5. 5.
    Zeitschriftenartikel
    Deisenroth, M.; Rasmussen, C.; Peters, J.: Gaussian Process Dynamic Programming. Neurocomputing 72 (7-9), S. 1508 - 1524 (2009)
  6. 6.
    Zeitschriftenartikel
    Nickisch, H.; Rasmussen, C.: Approximations for Binary Gaussian Process Classification. The Journal of Machine Learning Research 9, S. 2035 - 2078 (2008)
  7. 7.
    Zeitschriftenartikel
    Sonnenburg, S.; Braun, M.; Ong, C.; Bengio, S.; Bottou, L.; Holmes , G.; LeCun, Y.; Müller, K.-R.; Pereira, F.; Rasmussen, C. et al.; Rätsch, G.; Schölkopf, B.; Smola, A.; Vincent, P.; Weston, J.; Williamson, R.: The Need for Open Source Software in Machine Learning. The Journal of Machine Learning Research 8, S. 2443 - 2466 (2007)
  8. 8.
    Zeitschriftenartikel
    Pfingsten, T.; Herrmann, D.; Rasmussen, C.: Model-based Design Analysis and Yield Optimization. IEEE Transactions on Semiconductor Manufacturing 19 (4), S. 475 - 486 (2006)
  9. 9.
    Zeitschriftenartikel
    Quinonero Candela, J.; Rasmussen, C.: A Unifying View of Sparse Approximate Gaussian Process Regression. The Journal of Machine Learning Research 6, S. 1935 - 1959 (2005)
  10. 10.
    Zeitschriftenartikel
    Kuss, M.; Rasmussen, C.: Assessing Approximate Inference for Binary Gaussian Process Classification. The Journal of Machine Learning Research 6, S. 1679 - 1704 (2005)
  11. 11.
    Zeitschriftenartikel
    Hansen, L.; Rasmussen, C.: Pruning from Adaptive Regularization. Neural Computation 6 (6), S. 1222 - 1231 (1994)
  12. 12.
    Zeitschriftenartikel
    Rasmussen, C.: Presynaptic and Postsynaptic Competition in models for the Development of Neuromuscular Connections. Biological Cybernetics 68, S. 409 - 419 (1993)

Buch (1)

  1. 13.
    Buch
    Rasmussen, C.; Williams, C.: Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, USA (2006), 248 S.

Buchkapitel (1)

  1. 14.
    Buchkapitel
    Quiñonero-Candela, J.; Rasmussen, C.; Williams, C.: Approximation Methods for Gaussian Process Regression. In: Large-Scale Kernel Machines, S. 203 - 223 (Hg. Bottou, L.; Chapelle, O.; DeCoste, D.; Weston, J.). MIT Press, Cambridge, MA, USA (2007)

Konferenzband (1)

  1. 15.
    Konferenzband
    Pattern Recognition: 26th DAGM Symposium: Tübingen, Germany, August 30 - September 1, 2004 (Lecture Notes in Computer Science, 3175). 26th Pattern Recognition Symposium, Tübingen, Germany, 30. August 2004 - 01. September 2004. Springer, Berlin, Germany (2004), 581 S.

Konferenzbeitrag (34)

  1. 16.
    Konferenzbeitrag
    Duvenaud, D.; Nickisch, H.; Rasmussen, C.: Additive Gaussian Processes. In: Advances in Neural Information Processing Systems 24, S. 226 - 234 (Hg. Shawe-Taylor, J.; Zemel, R.; Bartlett, P.; Pereira, F.; Weinberger, K.). Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS 2011), Granada, Spain. Curran, Red Hook, NY, USA (2012)
  2. 17.
    Konferenzbeitrag
    Nickisch, H.; Rasmussen, C.: Gaussian Mixture Modeling with Gaussian Process Latent Variable Models. In: DAGM 2010: Pattern Recognition, S. 271 - 282 (Hg. Goesele, M.; Roth, S.; Kuijper, A.; Schiele, B.; Schindler, K.). 32nd Annual Symposium of the German Association for Pattern Recognition (DAGM 2010), Darmstadt, Germany, 22. September 2010 - 24. September 2010. Springer, Berlin, Germany (2010)
  3. 18.
    Konferenzbeitrag
    Saatci, Y.; Turner, R.; Rasmussen, C.: Gaussian process change point models. In: 27th International Conference on Machine Learning (ICML 2010), S. 927 - 934 (Hg. Fürnkranz, J.; Joachims, T.). 27th International Conference on Machine Learning (ICML 2010), Haifa, Israel, 21. Juni 2010 - 24. Juni 2010. Omnipress, Madison, WI, USA (2010)
  4. 19.
    Konferenzbeitrag
    Turner, R.; Deisenroth, M.; Rasmussen, C.: State-Space Inference and Learning with Gaussian Processes. In: JMLR Workshop and Conference Proceedings, Bd. 9, S. 868 - 875 (Hg. Teh, Y.; Titterington , M.). Thirteenth International Conference on Artificial Intelligence and Statistics (AI & Statistics 2010), Chia Laguna Resort, Sardinia, Italy, 13. Mai 2010 - 15. Mai 2010. JMLR, Madison, WI, USA (2010)
  5. 20.
    Konferenzbeitrag
    Rasmussen, C.; Deisenroth, M.: Probabilistic Inference for Fast Learning in Control. In: Recent Advances in Reinforcement Learning: 8th European Workshop, EWRL 2008, Villeneuve d’Ascq, France, June 30-July 3, 2008, S. 229 - 242 (Hg. Girgin, S.; Loth, M.; Munos, R.; Preux, P.; Ryabko, D.). 8th European Workshop on Reinforcement Learning (EWRL 2008), Villeneuve d‘Ascq, France, 30. Juni 2008 - 03. Juli 2008. Springer, Berlin, Germany (2008)
Zur Redakteursansicht