Suchergebnisse

Zeitschriftenartikel (227)

221.
Zeitschriftenartikel
Dayan, P.: Improving Generalization for Temporal Difference Learning: The Successor Representation. Neural computation 5 (4), S. 613 - 624 (1993)
222.
Zeitschriftenartikel
Dayan, P.: Arbitrary Elastic Topologies and Ocular Dominance. Neural computation 5 (3), S. 392 - 401 (1993)
223.
Zeitschriftenartikel
Dayan, P.; Sejnowski, T.: The Variance of Covariance Rules for Associative Matrix Memories and Reinforcement Learning. Neural computation 5 (2), S. 205 - 209 (1993)
224.
Zeitschriftenartikel
Dayan, P.: The Convergence of TD(λ) for General λ. Machine Learning 8 (3-4), S. 341 - 362 (1992)
225.
Zeitschriftenartikel
Watkins, C.; Dayan, P.: Q-learning. Machine Learning 8 (3-4), S. 279 - 292 (1992)
226.
Zeitschriftenartikel
Dayan, P.; Willshaw, D.: Optimising synaptic learning rules in linear associative memories. Biological Cybernetics 65 (4), S. 253 - 265 (1991)
227.
Zeitschriftenartikel
Willshaw, D.; Dayan, P.: Optimal Plasticity from Matrix Memories: What Goes Up Must Come Down. Neural computation 2 (1), S. 85 - 93 (1990)

Buch (1)

228.
Buch
Dayan, P.; Abbott, L.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge, MA, USA (2001), 460 S.

Buchkapitel (3)

229.
Buchkapitel
Dayan, P.: Exploration from Generalization Mediated by Multiple Controllers. In: Intrinsically Motivated Learning in Natural and Artificial Systems, S. 73 - 91 (Hg. Baldassarre, G.; Mirolli, M.). Springer, Berlin, Germany (2013)
230.
Buchkapitel
Dayan, P.: Models of Value and Choice. In: Neuroscience of Preference and Choice: Cognitive and Neural Mechanisms, 2, S. 33 - 52 (Hg. Dolan, R.; Sharot, T.). Elsevier/Academic Press, London, UK (2012)
231.
Buchkapitel
Platt, M.; Dayan, P.; Dehaene, S.; McCabe, H.; Menzel, R.; Phelps, E.; Plassmann, H.; Ratcliff, R.; Shadlen, M.; Singer, W.: Neuronal Correlates of Decision Making. In: Better than conscious?: decision making, the human mind, and implications for institutions, 6 (Hg. Engel, C.; Singer, W.). MIT Press, Cambridge, MA, USA (2008)

Konferenzband (1)

232.
Konferenzband
Exploration and Curiosity in Robot Learning and Inference (Dagstuhl Reports, 1). Dagstuhl Seminar 11131, Dagstuhl, Germany, 27. März 2011 - 01. April 2011. (2011)

Konferenzbeitrag (67)

233.
Konferenzbeitrag
Browning, M.; Carter, C.; Chatham, C.; Den Ouden, H.; Gillan, C.; Baker, J.; Chekroud, A.; Cools, R.; Dayan, P.; Gold, J. et al.; Goldstein, R.; Hartley, C.; Kepecs, A.; Lawson, R.; Mourao-Miranda, J.; Phillips, M.; Pizzagalli, D.; Powers, A.; Rindskopf, D.; Roiser, J.; Schmack, K.; Schiller, D.; Sebold, M.; Stephan, K.; Frank, M.; Huys, Q.; Paulus, M.: Realizing the Clinical Potential of Computational Psychiatry: Report from the Banbury Center Meeting, February 2019. Banbury Center Meeting, Huntington, NY, USA, 2019-02. Biological Psychiatry Epub ahead, (2020)
234.
Konferenzbeitrag
Dezfouli , A.; Ashtiani , H.; Ghattas, O.; Nock, R.; Dayan, P.; Ong, C.: Disentangled behavioural representations. In: Advances in Neural Information Processing Systems 32, S. 2251 - 2260 (Hg. Wallach, H.; Larochelle, H.; Beygelzimer , A.; d'Alché-Buc, F.; Fox, E. et al.). Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 09. Dezember 2019 - 13. Dezember 2019. (2019)
235.
Konferenzbeitrag
Jain, Y.; Gupta, S.; Rakesh, V.; Dayan, P.; Callaway, F.; Lieder, F.: How do people learn how to plan? In: Conference on Cognitive Computational Neuroscience (CCN 2019), PS-2A.70, S. 826 - 829. Conference on Cognitive Computational Neuroscience (CCN 2019), Berlin, Germany, 13. September 2019 - 16. September 2019. (2019)
236.
Konferenzbeitrag
Dezfouli, A.; Morris, R.; Ramos, F.; Dayan, P.; Balleine, B.: Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models. In: Advances in Neural Information Processing Systems 31, S. 4233 - 4242 (Hg. Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N. et al.). 32nd Annual Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada, 03. Dezember 2018 - 08. Dezember 2018. Curran, Red Hook, NY, USA (2019)
237.
Konferenzbeitrag
Ahilan, S.; Dayan, P.: Feudal Multi-Agent Hierarchies for Cooperative Reinforcement Learning. In: Annual Conference of the American Library Association (ALA 2019), 5, S. 1 - 5. Annual Conference of the American Library Association (ALA 2019) , Washington, DC, USA, 20. Juni 2019 - 25. Juni 2019. (2019)
238.
Konferenzbeitrag
Ahilan, S.; Dayan, P.: Feudal Multi-Agent Hierarchies for Cooperative Reinforcement Learning. In: Workshop on Structure & Priors in Reinforcement Learning (SPiRL 2019) at ICLR 2019, S. 1 - 11. Workshop on Structure & Priors in Reinforcement Learning (SPiRL 2019) at ICLR 2019, New Orleans, LA, USA, 06. Mai 2019. (2019)
239.
Konferenzbeitrag
Stojic, H.; Eldar, E.; Bassam, H.; Dayan, P.; Dolan, R.: Are you sure about that? On the origins of confidence in concept learning. In: Conference on Cognitive Computational Neuroscience (CCN 2018), PS-1A.14, S. 1 - 4. Conference on Cognitive Computational Neuroscience (CCN 2018), Philadelphia, PA, USA, 05. September 2018 - 08. September 2018. (2018)
240.
Konferenzbeitrag
Karaletsos, T.; Dayan, P.; Ghahramani, Z.: Probabilistic Meta-Representations Of Neural Networks. In: CAST's 4th Annual UDL Symposium: Empowering Learners, S. 1 - 10. CAST's 4th Annual UDL Symposium: Empowering Learners , Cambridge, MA, USA, 30. Juli 2018 - 01. August 2018. (2018)
Zur Redakteursansicht