Looking for Participants

The MPI for Biological Cybernetics is looking for participants for some of their research experiments [more].

Most recent Publications

Göksu C, Hanson LG, Siebner HR, Ehses P, Scheffler K and Thielscher A (May-2018) Human in-vivo brain magnetic resonance current density imaging (MRCDI) NeuroImage 171 26-39.
Zaiss M, Angelovski G, Demetriou E, McMahon MT, Golay X and Scheffler K (March-2018) QUESP and QUEST revisited: fast and accurate quantitative CEST experiments Magnetic Resonance in Medicine 79(3) 1708–1721.
Nassirpour S, Chang P, Fillmer A and Henning A (February-2018) A comparison of optimization algorithms for localized in vivo B0 shimming Magnetic Resonance in Medicine 79(2) 1145–1156.
Avdievich NI, Giapitzakis IA, Pfrommer A, Borbath T and Henning A (February-2018) Combination of surface and "vertical" loop elements improves receive performance of a human head transceiver array at 9.4 T NMR in Biomedicine 31(2) 1-13.
Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, Biskup S, Biswal S, Bitzer M, Boellaard R, Braren RF, Brendle C, Brindle K, Chiti A, la Fougère C, Gillies R, Goh V, Goyen M, Hacker M, Heukamp L, Knudsen GM, Krackhardt AL, Law I, Morris CJ, Nikolaou K, Nuyts J, Ordonez AA, Pantel K, Quick HH, Riklund K, Sabri O, Sattler B, Troost EGC, Zaiss M, Zender L and Beyer T (February-2018) Combined PET/MRI: Global Warming: Summary Report of the 6th International Workshop on PET/MRI, March 27–29, 2017, Tübingen, Germany Molecular Imaging and Biology 20(1) 4–20.


Biosignal Recording & Stimulation

Galvanic Vestibular Stimulation (GVS)

GVS is used to stimulate the human vestibular system by injecting small currents behind the ears of a person. Produced by Good Vibrations (Toronto, Canada) it consists of a small box designed to be fastened to a person’s body with 4 leads protruding outward used to attach behind the ears. The newly acquired GVS system will be used in conjunction with the MPI Stewart Platform and the MPS Cyber Motion Simulator to investigate self motion perception with the potential of virtually expanding the usable workspace of these devices. The GVS system will also be used with the tracking hall and the omnidirectional treadmill to enhance redirected walking techniques and to induce out-of-body experiences in virtual environments


Biosignal Recording & Brain Computer Interface

Biosignal (EEG, EOG, ECG, EMG) acquisition allows investigation of brain-, heart- and muscle-activity, eye movements, respiration, galvanic skin response and many other physiological and physical parameters.  Produced by g.tec medical engineering (Schiedlberg, Austria) it consists of a 16-channel biosignal amplifier (up to 256 channels supported) as well as a portable 8 channel amplifier which enables data acquisition during free movement. The newly acquired g-tec system has been used in conjunction with the MPI Stewart Platform and will in future be used with the MPS Cyber Motion Simulator to investigate biosignal responses to self-motion. High-speed online processing of the g-tec system under MATLAB SIMULINK enables brain computer interfacing. At present the system is capable of controlling cursor movement on a display screen in real-time after training the computer on subject specific activation patterns. Plans to extend this to interfacing the g-tec system with the control computer of the MPI Cyber Motion Simulator will potentially enable the user to control self-motion by monitoring differential activation of the sensorimotor cortex using a motor imagery paradigm.

Last updated: Friday, 14.10.2016