Head of the Magnetic Resonance Center

Prof. Dr. Klaus Scheffler
klaus.scheffler[at]tuebingen.mpg.de

 

Secretary: Tina Schröder
Phone: +49 7071 601-701
Fax: +49 7071 601-702
tina.schroeder[at]tuebingen.mpg.de

 

see our SpinZOO here


 

High-field Magnetic Resonance - Visualizing Thinking

Modern medical diagnostics would be unthinkable without magnetic resonance tomography (MRT). In addition to traditional imaging, which reveals anatomical structures, functional MRT (fMRT) has become a valuable tool. It comes close to allowing us to watch the brain at work and has contributed considerably to the advances in human cognitive neuroscience. The special advantage of MRT is that the experiments, unlike X-ray diagnostics, computer tomography (CT) and positron emission tomography (PET), can be carried out without putting any strain on the health of the person being examined. In particular, it can create outstanding images of soft tissue in the biological organism, which means that for the first time it is possible to explore human brain processes non-invasively with good spatial resolution.


Our primary goal is to develop new magnetic resonance techniques that are able to specifically probe the structural and biochemical composition of living tissue. This is closely linked with our interest to understand the details of magnetic resonance signal formation within a living environment, as nuclear magnetization is continuously influenced by different processes during its live time between excitation and relaxation. This is a simple, eventually computationally demanding task, since we just have to forward the tiny fluctuating magnetic fields, which are sensed by the water during its random or oriented walk through tissue, to the Bloch or similar equations. A prominent example is the detection of neuronal activation with magnetic resonance, often called functional MRI or fMRI: increased neuronal activation increases the observed magnetic resonance signal, and sometimes vice versa. This BOLD effect is the working horse of numerous applications in cognitive neurosciences, however, a detailed understanding of this effect on a microscopic or mesoscopic scale is missing.
 
Besides functional MRT, which measures nerve cell activity indirectly via the blood flow response, magnetic resonance is also very useful for mapping neurochemical and neurobiological brain processes directly. However, a magnetic field stronger than that of clinical instruments is necessary for these advanced measurements. To provide optimal research opportunities, two ultra high-field magnetic resonance imaging systems were acquired - a MRT system with a field strength of 9.4 Tesla and a usable volume of 60 cm diameter for human studies and a 16.4 Tesla MRT system for small animal studies are available. In comparison, the strength of the earth’s magnetic field in Central Europe is around 0.00005 Tesla. In addition to the two large magnets, there is a clinical 3.0 Tesla MRT system available, which will be used for neuroscience applications and joint ventures.

Research on these three systems is focused on neuronal activity and connectivity, as well as on the neurochemistry of the brain. New methods will also be developed, which permit highly specific and quantitative mapping of neuronal activity and bioenergetic processes in nerve cells. Faster image acquisition and better image quality also form part of the research objective. The high magnetic field strengths provide the possibility to apply high resolution spectroscopic MR methods. These techniques permit to obtain more precise insights in the chemical processes in the brain. For example, the function of neurotransmitters such as GABA or glutamate can be revealed in greater detail. In addition to hydrogen, the most frequently used nucleus in MRT, it is possible to use the signal from other MR active elements such as carbon, oxygen, fluorine or phosphorus. Such investigations are less feasible in devices with low magnetic fields, because of the much lower sensitivity and concentration of these nuclei compared to hydrogen.

Special contrast agents can be used to increase the contrast and improve the sensitivity of the MRT method. The objective is to develop cell-specific contrast agents which are either activated in the target cell or are selectively enclosed. These new “intelligent” contrast agents can then be used with MR imaging for structural MR examinations, improved diagnostics (e.g. detection of cancer cells) or to observe cells moving in the organism.
 

Research Groups of the Department



Ultra High Field Magnetic Resonance
Contrast Agent Development

The High-Field MR and Methodology group focuses mainly on the development of MR techniques, with emphasis on MR imaging and spectroscopy at ultra high field. In addition, the characteristics and advantages of ultra high magnetic fields are investigated. For this, we have, with a 9.4 T human MR scanner and an instrument for animal research with a field strength of 16.4 T, two of the most sophisticated tomographs worldwide.[more]

Magnetic Resonance Imaging (MRI) offers a non-invasive means to map structure and function by sampling the amount, flow and environment of water protons in vivo. Contrast agents increase the intrinsic contrast generated in MR images. They are routinely used to enhance regions, tissues and cells that are magnetically similar but histologically distinct. [more]
Multimodal Imaging using TMS and (f)MRI

Sequences and Signals

The methodological focus of our group is on the on- and offline combination of transcranial magnetic stimulation (TMS) with functional magnetic resonance imaging (fMRI). In addition, we use high-resolution finite-element calculations to characterize the electric field induced by transcranial brain stimulation[more]


Our primary goal is to develop new magnetic resonance techniques that are able to specifically probe the structural and biochemical composition of living tissue. This is closely linked with our interest to understand the details of magnetic resonance signal formation within a living environment, as nuclear magnetization is continuously influenced by different processes during its live time between excitation and relaxation.[more]

Last updated: Monday, 03.11.2014