Contact

Janina Esins

 

Picture of Esins, Janina

Janina Esins

Position: PhD Student  Unit: Alumni Bülthoff

Research Group: Recognition and Categorization (RecCat)

Supervisors: Isabelle Bülthoff and Johannes Schultz

 

Prosopagnosia or “face blindness” is a developmental or acquired disorder which destroys the ability to process faces holistically. There is limited understanding of both holistic face processing in general and of the disorder, particularly in its developmental form.

 

We want to get a deeper insight and understanding of face perception and processing in general as well as its impairment, prosopagnosia. In this study, we cerate an extended test battery to examine face recogntion impairments, the role of the featural and configural face dimensions, dynamic information of faces, etc. These results will then be used to gain a broader understanding of developmental prosopagnosia by examining the impairment of recognition and processing of faces.

Face processing in congenital Prosopagnosia


Introduction

Recognizing faces is arguably the most important method to identify fellow humans. Prosopagnosia disturbs this ability and therefore severely impairs social interactions. In my projects I focus on the congenital (i.e. inborn) form of prosopagnosia. The manifestations of prosopagnosia are very diverse in terms of severity and affected abilities, such that even face-unrelated impairments (e.g. object recognition deficits) can occur [1].

 

Goals

My goal was to develop a collection of psychophysical tests to assess different aspects of face and object recognition in prosopagnosics and to compare their performance to healthy controls in order to identify and quantify their impairments.

 

Methods

I created 16 psychophysical tests to investigate a large variety of aspects in face and object processing, e.g. recognition of facial expressions, familiar persons, facial motion, objects, navigation, etc [Fig. 1]. We tested a total of 27 prosopagnosics and age-, gender- and education-matched controls. Such a large sample size allowed us to gain new insights about the different manifestations of prosopagnosia.

example pictures of some of the ceated tests

Fig.1: Examples of stimuli of the different tests. From left to right, first row: Famous face test, Composite face test, Famous choice test. Second row: Sensitivity to features test and Navigation test.


Results

Ten of the sixteen tests revealed significant performance differences between prosopagnosics and controls. For example prosopagnosic exhibited worse identification rate of familiar faces, worse recognition of gender of unfamiliar faces but performed well in navigation tasks and object recognition tasks, etc. Our results show, for example, that prosopagnosics, in comparison to controls, are impaired in processing the spatial distances between the facial features (configuration) [2], [Fig. 2] while they are only slightly impaired in processing the shape of facial features. Another finding is that, in contrast to controls, prosopagnosics do not show any advantage from learning dynamic faces, compared to learning static faces [Fig.3]. This finding is in accordance with a study finding that the pSTS (a brain region known for processing facial and body motion) has a reduced connectivity to the other core regions for face processing in congenital prosopagnosics compared to controls [3].

 

Conclusions

The large range of individual and general performances of the prosopagnosics across all tests shows that prosopagnosia is even more diverse than expected. In sum, this project shed further light on the impairments caused by congenital prosopagnosia for a better understanding of this condition. It also allows for a better understanding of face processing in general.

 

References

[1]  Kress T, and Daum I (2003) Developmental prosopagnosia: a review. Behavioural neurology, 14(3-4), 109-121.

[2]  Esins J, Schultz J, Wallraven, C, Bülthoff I, (2014). Do congenital prosopagnosia and the other-race effect affect the same face recognition mechanisms? Frontiers in Human Neuroscience, 8, 1–14.

[3]  Avidan G, Tanzer M, Hadj-Bouziane F, Liu N, Ungerleider  LG, Behrmann M (2013) Selective dissociation between core and extended regions of the face processing network in congenital prosopagnosia, Cerebral cortex, 24(6), 1565-1578.

 

 

Sensitivity of prosopagnosic participants (red) and controls (blue) to featural and configural information of a face. Participants had to rate the similarity (on a Likert-scale from 1 to 7) of two faces either differing only in features or only in configuration. Sensitivity was calculated based on the given ratings. For features the difference between groups was marginally significant (p = .051), for configuration it was significant (p = .001) and there was no significant interaction.

Fig.2: Sensitivity of prosopagnosic participants (red) and controls (blue) to featural and configural information of a face. Participants had to rate the similarity (on a Likert-scale from 1 to 7) of two faces either differing only in features or only in configuration. Sensitivity was calculated based on the given ratings. For features the difference between groups was marginally significant (p = .051), for configuration it was significant (p = .001) and there was no significant interaction.

 

 

 

 

 

performance of prosopagnosics is equal for the static and dynamic condition. Controls can improve their performance in the dynamic condition compared to the static condition.

 

Fig.3: Performance of prosopagnosic participants (red) and controls (blue) for recognizing faces. Faces were both learned and tested either statically or dynamically. While matched controls showed a significantly better performance for dynamic faces than static faces, prosopagnosics did not. Also the interaction of participant group and motion information was significant (p = .03).

EDUCATION

currently PhD student at the Max Planck Institute for Biological Cybernetics, Germany
2003 - 2009 Studies of Biomathematics at the Universität Greifswald, Germany; Grade: German Diplom (equivalent to a Master's degree)
2006 Study abroad at the Massey University, Palmerston North, New Zealand
2002 - 2003 Freiwilliges Ökologisches Jahr (voluntary year of ecological service) at the Institute of Microbiology, Universität Greifswald, Germany
1993 - 2002 Gerhardt-Hauptmann-Gymnasium Wismar, Germany; Abitur (University entrance qualification)

 

PROFESSIONAL EXPERIENCE

02/2009 - 07/2009
and

06/2007 - 08/2007

Research assistant / assistant professor at the Institute of Mathematics and Computer Science,  Greifswald, Germany.
Duties: measurement and evaluation of high-frequency EEG data with Matlab02/2009 and 06/2007



 

CONTINUING EDUCATION

08/2009 - 12/2009 Language studies in Peru


Preferences: 
References per page: Year: Medium:

  
Show abstracts

Books (1):

Esins J: Face processing in congenital prosopagnosia, 137, Logos Verlag, Berlin, Germany, (2015). ISBN: 978-3-8325-3983-2, Series: MPI Series in Biological Cybernetics ; 43

Articles (3):

Esins J, Schultz J, Stemper C, Kennerknecht I and Bülthoff I (January-2016) Face Perception and Test Reliabilities in Congenital Prosopagnosia in Seven Tests i-Perception 7(1) 1-37.
Esins J, Schultz J, Wallraven C and Bülthoff I (September-2014) Do congenital prosopagnosia and the other-race effect affect the same face recognition mechanisms? Frontiers in Human Neuroscience 8(759) 1-14.
Esins J, Schultz J, Bülthoff I and Kennerknecht I (September-2014) Galactose uncovers face recognition and mental images in congenital prosopagnosia: The first case report Nutritional Neuroscience 17(5) 239-240.

Posters (5):

Esins J, Bülthoff I and Schultz J (May-21-2014): Facial motion does not help face recognition in congenital prosopagnosics, 14th Annual Meeting of the Vision Sciences Society (VSS 2014), St. Pete Beach, FL, USA, Journal of Vision, 14(10) 1436.
Esins J, Schultz J, Kim BR, Wallraven C and Bülthoff I (November-2012): Comparing the other race effect and congenital prosopagnosia using a three-experiment test battery, 13th Conference of the Junior Neuroscientists of Tübingen (NeNA 2012), Schramberg, Germany.
Esins J, Bülthoff I, Kennerknecht I and Schultz J (September-2012): Can a test battery reveal subgroups in congenital prosopagnosia?, 35th European Conference on Visual Perception, Alghero, Italy, Perception, 41(ECVP Abstract Supplement) 113.
Esins J, Schultz J, Kim BR, Wallraven C and Bülthoff I (July-2012): Comparing the other-race-effect and congenital Prosopagnosia using a three-experiment test battery, 8th Asia-Pacific Conference on Vision (APCV 2012), Incheon, South Korea, i-Perception, 3(9) 688.
pdf
Esins J, Bülthoff I and Schultz J (September-2011): The role of featural and configural information for perceived similarity between faces, 11th Annual Meeting of the Vision Sciences Society (VSS 2011), Naples, FL, USA, Journal of Vision, 11(11) 673.
pdf

Talks (2):

Esins J (October-2-2013) Abstract Talk: What is it like being face blind?, 14th Conference of Junior Neuroscientists of Tübingen (NeNa 2013), Schramberg, Germany 10.
Kim BR, Esins J, Schultz J, Bülthoff I and Wallraven C (July-15-2012) Abstract Talk: Mapping the other-race-effect in face recognition using a three-experiment test battery, 8th Asia-Pacific Conference on Vision (APCV 2012), Incheon, South Korea, i-Perception, 3(9) 711.

Export as:
BibTeX, XML, Pubman, Edoc, RTF
Last updated: Monday, 22.05.2017