Projektleiter

Betty Mohler, PhD
Tel: 07071 601-217
Fax: 07071 601-616
betty.mohler[at]tuebingen.mpg.de
 
Martin Dobricki, Dr. Phil.
Tel: 07071 601-215
Fax: 07071 601-616
Opens window for sending emailmartin.dobricki[at]tuebingen.mpg.de
 

PAVE-Poster


Neuigkeiten

 
 
 

Aktuellste Veröffentlichungen

Basten K, Meilinger T und Mallot HA (September-2012) Mental Travel Primes Place Orientation in Spatial Recall In: Spatial Cognition VIII, , International Conference Spatial Cognition (SC 2012), Springer, Berlin, Germany, 378-385, Series: Lecture Notes in Computer Science ; 7463.
pdf
Bieg H-J, Bresciani J-P, Bülthoff HH und Chuang LL (September-2012): Asymmetries in saccadic latencies during interrupted ocular pursuit, 35th European Conference on Visual Perception, Alghero, Italy, Perception, 41(ECVP Abstract Supplement) 137.
Dobricki M, Mohler BJ und Bülthoff HH (August-2012): Onset time of visually induced circular self-motion perception as an indicator for altered self-localization in immersive virtual reality, 12th Annual Meeting of the Vision Sciences Society (VSS 2012), Naples, FL, USA, Journal of Vision, 12(9) 1326.
Linkenauger S, Mohler B, Proffitt D und Bülthoff HH (August-2012): The Role of Visual Foot Size in Perceiving Object Size from Texture Gradient, 12th Annual Meeting of the Vision Sciences Society (VSS 2012), Naples, FL, USA, Journal of Vision, 12(9) 902.
Neth CT, Souman JL, Engel D, Kloos U, Bülthoff HH und Mohler BJ (Juli-2012) Velocity-Dependent Dynamic Curvature Gain for Redirected Walking IEEE Transactions on Visualization and Computer Graphics 18(7) 1041-1052.
pdf

Export als:
BibTeX, XML, pubman, Edoc, RTF

 

Wahrnehmen und Handeln in virtuellen Umgebungen

Betty Mohler sieht ihren eigenanimierten Avatar in ihrem Head-Mounted Display.
Betty Mohler sieht ihren eigenanimierten Avatar in ihrem Head-Mounted Display.
Ziel der Forschungsgruppe “Wahrnehmen und Handeln in virtuellen Umgebungen” ist die Erforschung menschlicher Wahrnehmung, Kognition und Verhaltens in natürlicher Umgebung. Hierfür bedienen wir uns realitätsgetreuer und mit vielen Sinnen erfahrbarer virtueller Welten (virtual reality, VR). Dies ermöglicht es uns einerseits sensorische Reize in einer kontrollierten Umgebung zu präsentieren als auch sie in einer Art und Weise zu verändern wie das in der realen Welt nicht möglich wäre.

Im Speziellen ermöglicht unsere hochmoderne VR-Technologie den sichtbaren Körper, den Inhalt der virtuellen Welt sowie sensorische Reize (visuell, vestibulär, kinästhetisch, taktil und auditorisch) während dem Wahrnehmen oder Handeln zu verändern. Unsere Forschungsgruppe konzentriert sich auf verschiedene Forschungsfragen, bezieht sich jedoch immer auf die Messung menschlicher Leistungsfähigkeit in komplexen, alltäglichen Situationen, z.B. beim Gehen, Fahren, Kommunizieren oder während der räumlichen Orientierung. Wir untersuchen die Auswirkung eines animierten, den Nutzer repräsentierenden Avatars auf die räumliche Wahrnehmung, die Kommunikation oder das Gefühl einen bzw. einen bestimmten Körper zu haben. Wir interessieren uns dafür, wie sich andere Avatare auf Leistung, Emotions-Wahrnehmung, Lernen und Training sowie die visuelle und körperliche Kontrolle von Fortbewegungsprozessen auswirkt. Außerdem erforschen wir wie sich Menschen in alltäglichen Umwelten wie Gebäuden oder Städten orientieren und wie sie diese im Gedächtnis repräsentieren. Zusammengefasst arbeitet unsere Forschungsgruppe daran, menschliches Verhalten, Wahrnehmung und Kognition komplexer Alltagsprozesse besser zu verstehen. Dazu nutzen und verbessern wir modernste VR-Technologien.

Main research areas

Visual body influences perception:
Seeing a virtual avatar in the virtual environment influences egocentric distance estimates. If this avatar is a self-animated avatar, egocentric distances are even more influenced (Mohler, Presence, 2010).  Eye-height influences egocentric space and dimension estimates in virtual environments (Leyrer, APGV 2011).  Seeing a virtual character (self or other) impacts subsequent performance of common tasks in virtual environments (McManus, supervised by Mohler, APGV 2011).  The size of visual body parts (hands/arm length) influences size and distance estimates in virtual worlds (Linkenauger, ECVP and VSS 2011).  These results taken together argue that the body plays a central role in the perception of our surrounding environment.
 
The role of visual body information in human interaction and communication:
Current state-of-the-art in motion capture tracking enables scientists to animate avatars with multiple participant’s body motion in real time. We have used this technology to conduct experiments investigating the role of body language on successful communication and interaction. We have found that body language is important for successful communication in a word-communication task and that both the speaker’s and the listener’s body movements (as seen through animated avatars) impacts communication (Dodds, CASA, 2010).  We have further shown that people move more if they are wearing the xSens Moven suits and using large-screen projection technology as compared to when they are wearing Vicon rigid body tracking objects and viewing the virtual world in a low field-of-view head-mounted display (Dodds, PLoS One 2011). We have also investigated the role of the visual information of the interaction partner on task performance in a table-tennis paradigm. We have shown that the social context (competitive or cooperative) mediates the use of visual information about the interaction partner (Streuber, EBR 2011). We have also used motion capture technology to investigate the use of VR for medical training (Alexandrova CASA, 2011) and the emotional expression of body language (Volkova, IMRF, 2011).
 
Self-motion perception while walking and reaching:
We have conducted studies to investigate the sensory contribution to encoding walking velocity (visual, vestibular, proprioceptive, efferent copy) and have found a new measure for self-motion perception: active pointing trajectory (Campos, PLoS One, 2009). We have further demonstrated that imagined walking is different than physical walking, in that participants point in a way that indicates that they are not simulating all of their sensory information for walking when imagining walking. Additionally, we have investigated human’s ability to detect when they are walking on a curved path and the influence of walking speed on curvature sensitivity. We have found that walking speed does influence curvature sensitivity, showing that when walking at a slower velocity people are less sensitive to walking on a curve. We exploit this perceptual knowledge and designed a dynamic gain controller for redirected walking, which enables participants to walk unaided in a virtual city (Neth, IEEE-VR 2011).  Finally, we have investigated motor learning in for reaching given different viewpoints and different visual realism of the arm and environment and make suggestions for the use of VR for rehabilitation and motor-learning experiments (Shomaker, Tesch, Buelthoff & Bresciani, EBR 2011).
 
Spatial perception and cognition:
Visiting Prof. Roy Ruddle investigated the role of body-based information on spatial navigation. He found that walking improves humans cognitive map in large virtual worlds (Ruddle, ToCHI 2011) and he investigated the role of body-based information and landmarks on route knowledge (Ruddle, Memory & Cognition 2011).  We have also found that pointing to locations within one’s city of residence relies on a single north-oriented reference frame likely learned from maps [Frankenstein, PsychScience in press]. Without maps available navigators primarily memorize a novel space as local interconnected reference frames corresponding to a corridor or street [Meilinger 2010 and Hensen, supervised by Meilinger 2011 Cog Sci,]. Consistent with these results, entorhinal grid cells in humans quickly remap their grid orientation after changing the surrounding environment (Pape, supervised by Melinger SfN 2011). Additionally, we have found that egocentric distance estimates are also underestimated in large screen displays, and are influenced by the distance to the screen (Alexandrova, APGV 2010).

Selected Publications

130. Meilinger T und Vosgerau G (Oktober-2008) Abstract Talk: Conceptions of Space: an Interdisciplinary Exchange, 9. Fachtagung der Gesellschaft für Kognitionswissenschaft (KogWis '08), Dresden, Germany 14.
CiteID: 5244
129. Meilinger T (Oktober-2008) Abstract Talk: Human orientation in Space: Distinguishing spaces, memory systems, and reference frames, 9. Fachtagung der Gesellschaft für Kognitionswissenschaft (KogWis '08), Dresden, Germany 15.
CiteID: 5245
128. Meilinger T, Schulte-Pelkum J, Laharnar N, Teramoto W, Frankenstein J und Bülthoff HH (Oktober-2008) Abstract Talk: Orientation biases in memory for vista and environmental spaces, 9. Fachtagung der Gesellschaft für Kognitionswissenschaft (KogWis '08), Dresden, Germany 31.
CiteID: 5246
127. Wiener JM, Meilinger T und Berthoz A (Oktober-2008) Abstract Talk: The integration of spatial information across different perspectives, 9. Fachtagung der Gesellschaft für Kognitionswissenschaft (KogWis '08), Dresden, Germany 31.
CiteID: 5528
126. Bakdash JZ, Linkenauger SA und Proffitt DR (September-2008) Comparing Decision-Making and Control for Learning a Virtual Environment: Backseat Drivers Learn Where They are Going, 52nd Annual Meeting of the Human Factors and Ergonomics Society (HFES 2008), Sage, London, UK, 2117-2121.
CiteID: BakdashLP2008
125. Kober J, Mohler B und Peters J (September-2008) Learning Perceptual Coupling for Motor Primitives, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), IEEE Service Center, Piscataway, NJ, USA, 834-839.
pdfCiteID: 5414
124. Meilinger T (September-2008) The Network of Reference Frames Theory: A Synthesis of Graphs and Cognitive Maps In: Spatial Cognition VI: Learning, Reasoning, and Talking about Space, , International Conference Spatial Cognition (SC 2008), Springer, Berlin, Germany, 344-360, Series: Lecture Notes in Computer Science ; 5248.
pdfCiteID: 5181
123. Bülthoff HH, Campos JL und Meilinger T (September-2008) Virtual Reality as a Valuable Research Tool for Investigating Different Aspects of Spatial Cognition In: Spatial Cognition VI: Learning, Reasoning, and Talking about Space, , International Conference Spatial Cognition (SC 2008), Springer, Berlin, Germany, 1-3, Series: Lecture Notes in Computer Science ; 5248.
pdfCiteID: 5517
122. Mohler B, Bülthoff HH, Thompson WB und Creem-Regehr SH (August-2008) A full-body avatar improves egocentric distance judgments in an immersive virtual environment, 5th Symposium on Applied Perception in Graphics and Visualization (APGV 2008), ACM Press, New York, NY, USA, 194-197.
CiteID: 5233
121. Streuber S, Chatziastros A, Mohler BJ und Bülthoff HH (August-2008) Joint and individual walking in an immersive collaborative virtual environment, 5th Symposium on Applied Perception in Graphics and Visualization (APGV 2008), ACM, New York, NY, USA, 191.
CiteID: 5552
120. Trutoiu LC, Streuber S, Mohler BJ, Schulte-Pelkum J und Bülthoff HH (August-2008) Tricking people into feeling like they are moving when they are not paying attention, 5th Symposium on Applied Perception in Graphics and Visualization (APGV 2008), ACM Press, New York, NY, USA, 190.
CiteID: 5626
119. Bresciani J-P, Drewing K und Ernst MO: Human Haptic Perception and the Design of Haptic-Enhanced Virtual Environments, 61-106. In: The Sense of Touch and its Rendering: Progress in Haptics Research, (Ed) A. Bicchi, Springer, Berlin, Germany, (August-2008).
CiteID: 4969
Seite:  
1, ... , 6, 7, 8, 9, 10, ... , 18

Export als:
BibTeX, XML, pubman, Edoc, RTF
Last updated: Montag, 01.09.2014