Contact

Dr. Dengyong Zhou

Raum Nummer: 217

 

Bild von Zhou, Dengyong, Dr.

Dengyong Zhou

Position: Wissenschaftler  Abteilung: 

Präferenzen: 
Referenzen pro Seite: Jahr: Medium:

  
Zeige Zusammenfassung

Artikel (3):

Weston J, Leslie CS, Ie E, Zhou D, Elisseeff A und Noble WS (2005) Semi-supervised protein classification using cluster kernels Bioinformatics 21(15) 3241-3247.
Weston J, Elisseeff A, Zhou D, Leslie C und Noble WS (April-2004) Protein ranking: from local to global structure in the protein similarity network Proceedings of the National Academy of Sciences of the United States of America 101(17) 6559-6563.
Zhou D und Dai R (2001) The control structure of artificial creatures Artificial Life and Robotics 5(3).

Beiträge zu Tagungsbänden (11):

Zhou D, Huang J und Schölkopf B (September-2007) Learning with Hypergraphs: Clustering, Classification, and Embedding In: Advances in Neural Information Processing Systems 19, , Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), MIT Press, Cambridge, MA, USA, 1601-1608.
pdf
Huang J, Zhu T, Rereiner R, Zhou D und Schuurmans D (September-2006) Information Marginalization on Subgraphs In: Knowledge Discovery in Databases: PKDD 2006, , 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Springer, Berlin, Germany, 199-210, Series: Lecture Notes in Computer Science ; 4213.
Bandos TV, Zhou D und Camps-Valls G (August-2006) Semi-supervised Hyperspectral Image Classification with Graphs, IEEE International Conference on Geoscience and Remote Sensing (IGARSS 2006), IEEE Computer Society, Los Alamitos, CA, USA, 3883-3886.
pdf
Zhou D, Huang J und Schölkopf B (August-2005) Learning from Labeled and Unlabeled Data on a Directed Graph, 22nd International Conference on Machine Learning (ICML 2005), ACM Press, New York, NY, USA, 1036-1043.
pdf
Zhou D und Schölkopf B (August-2005) Regularization on Discrete Spaces In: Pattern Recognition, , 27th Annual Symposium of the German Association for Pattern Recognition (DAGM 2005), Springer, Berlin, Germany, 361-368, Series: Lecture Notes in Computer Science ; 3663.
Zhou D, Schölkopf B und Hofmann T (Juli-2005) Semi-supervised Learning on Directed Graphs In: Advances in Neural Information Processing Systems 17, , Eighteenth Annual Conference on Neural Information Processing Systems (NIPS 2004), MIT Press, Cambridge, MA, USA, 1633-1640.
pdf
Zhou D und Schölkopf B (September-2004) Learning from Labeled and Unlabeled Data Using Random Walks In: Pattern Recognition, , 26th Annual Symposium of the German Association for Pattern Recognition (DAGM 2004), Springer, Berlin, Germany, 237-244, Series: Lecture Notes in Computer Science ; 3175.
pdf
Zhou D und Schölkopf B (Juli-2004) A Regularization Framework for Learning from Graph Data, ICML 2004 Workshop on Statistical Relational Learning and Its Connections to Other Fields (SRL 2004), 132-137.
pdf
Zhou D, Bousquet O, Lal TN, Weston J und Schölkopf B (Juni-2004) Learning with Local and Global Consistency In: Advances in Neural Information Processing Systems 16, , Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003), MIT Press, Cambridge, MA, USA, 321-328.
pdf
Zhou D, Weston J, Gretton A, Bousquet O und Schölkopf B (Juni-2004) Ranking on Data Manifolds In: Advances in neural information processing systems 16, , Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003), MIT Press, Cambridge, MA, USA, 169-176.
pdf
Weston J, Leslie C, Zhou D, Elisseeff A und Noble WS (Juni-2004) Semi-Supervised Protein Classification using Cluster Kernels In: Advances in Neural Information Processing Systems 16, , Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003), MIT Press, Cambridge, MA, USA, 595-602.
pdf

Beiträge zu Büchern (1):

Zhou D und Schölkopf B: Discrete Regularization, 237-250. In: Semi-supervised Learning, (Ed) O. Chapelle, MIT Press, Cambridge, MA, USA, (2006).
pdf

Technische Berichte (7):

Zhou D, Huang J und Schölkopf B: Beyond Pairwise Classification and Clustering Using Hypergraphs, 143, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, (August-2005).
pdf
Yu K, Tresp V und Zhou D: Semi-Supervised Induction, 141, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, (August-2004).
pdfpdf
Zhou D und Schölkopf B: Transductive Inference with Graphs, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, (August-2004).
Zhou D und Schölkopf B: Learning from Labeled and Unlabeled Data Using Random Walks, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, (März-2004).
pdf
Zhou D, Bousquet O, Lal TN, Weston J und Schölkopf B: Learning with Local and Global Consistency, 112, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, (Juni-2003).
Zhou D, Weston J, Gretton A, Bousquet O und Schölkopf B: Ranking on Data Manifolds, 113, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, (Juni-2003).
pdf
Zhou D, Xiao B, Zhou H und Dai R: Global Geometry of SVM Classifiers, (Juni-2002).
pdfps

Abschlussarbeiten (1):

Zhou D: Intelligence as a Complex System, (2000). PhD thesis

Vorträge (7):

Zhou D, Huang J und Schölkopf B (Dezember-10-2005) Invited Lecture: Beyond pairwise classification and clustering using hypergraphs, NIPS Workshop on Computational Biology and the Analysis of Heterogeneous Data (MLCB 2005), Whistler, BC, Canada.
Zhou D (Dezember-10-2005): Spectral clustering and transductive inference for graph data, NIPS 2005 Workshop on Kernel Methods and Structured Domains, Whistler, BC, Canada.
pdf
Zhou D (Oktober-18-2004) Invited Lecture: Discrete vs. Continuous: Two Sides of Machine Learning, Department of Computer science, and the Center of Computational Learning Systems, Columbia University, New York, NY, USA.
pdf
Zhou D (Oktober-12-2004): Discrete vs. Continuous: Two Sides of Machine Learning, IBM Watson Research Center, Yorktown Heights, NY, USA.
pdf
Zhou D (Oktober-5-2004) Invited Lecture: How to learn from very few examples?, Google Labs, New York, NY, USA.
pdf
Zhou D (Juni-25-2004) Invited Lecture: Riemannian Geometry on Graphs and its Application to Ranking and Classification, DIMACS Working Group on The Mathematics of Web Search and Meta-Search, Bertorino, Italy.
pdf
Zhou D (Januar-2004) Invited Lecture: Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking, The Natural Language Computing Group of Microsoft Research Asia, and the Institute of System Sciences, the Chinese Academy of Sciences, Beijing, China.
pdf

Export als:
BibTeX, XML, pubman, Edoc, RTF
Last updated: Montag, 22.05.2017