Contact

Dr. Xiaohai Sun

Raum Nummer: 209
Fax: 0(0)7071-601-552

 

Bild von Sun, Xiaohai, Dr.

Xiaohai Sun

Position: Postdoc  Abteilung: 

Präferenzen: 
Referenzen pro Seite: Jahr: Medium:

  
Zeige Zusammenfassung

Bücher (1):

Sun X: Causal inference from statistical data, 220, Logos Verlag, Berlin, Germany, (2008). ISBN: 978-3-8325-1916-2, Series: MPI Series in Biological Cybernetics ; 21

Artikel (1):

Sun X, Janzing D und Schölkopf B (März-2008) Causal Reasoning by Evaluating the Complexity of Conditional Densities with Kernel Methods Neurocomputing 71(7-9) 1248-1256.

Beiträge zu Tagungsbänden (9):

Sun X (September-2008) Assessing Nonlinear Granger Causality from Multivariate Time Series In: Machine Learning and Knowledge Discovery in Databases, , European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2008), Springer, Berlin, Germany, 440-455, Series: Lecture Notes in Computer Science ; 5212.
pdf
Sun X (September-2008) Distribution-free Learning of Bayesian Network Structure In: Machine Learning and Knowledge Discovery in Databases, , European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2008), Springer, Berlin, Germany, 423-439, Series: Lecture Notes in Computer Science ; 5212.
pdf
Fukumizu K, Gretton A, Sun X und Schölkopf B (September-2008) Kernel Measures of Conditional Dependence In: Advances in neural information processing systems 20, , Twenty-First Annual Conference on Neural Information Processing Systems (NIPS 2007), Curran, Red Hook, NY, USA, 489-496.
pdf
Sun X (Juni-2008) A Kernel Test of Nonlinear Granger Causality, Workshop on Inference and Estimation in Probabilistic Time-Series Models, Isaac Newton Institute for Mathematical Sciences, Cambridge, United Kingdom, 79-89.
Sun X, Janzing D, Schölkopf B und Fukumizu K (Juni-2007) A Kernel-Based Causal Learning Algorithm, 24th Annual International Conference on Machine Learning (ICML 2007), ACM Press, New York, NY, USA, 855-862.
pdf
Sun X, Janzing D und Schölkopf B (April-2007) Distinguishing Between Cause and Effect via Kernel-Based Complexity Measures for Conditional Distributions In: Advances in computational intelligence and learning, , 15th European Symposium on Artificial Neural Networks (ESANN 2007), D-Side, Evere, Belgium, 441-446.
pdf
Sun X und Janzing D (April-2007) Exploring the causal order of binary variables via exponential hierarchies of Markov kernels In: Advances in Computational Intelligence and Learning, , 15th European Symposium on Artificial Neural Networks (ESANN 2007), D-Side, Evere, Belgium, 465-470.
pdf
Sun X und Janzing D (April-2007) Learning causality by identifying common effects with kernel-based dependence measures In: Advances in Computational Intelligence and Learning, , 15th European Symposium on Artificial Neural Networks (ESANN 2007), D-Side, Evere, Belgium, 453-458.
pdf
Sun X, Janzing D und Schölkopf B (Januar-2006) Causal Inference by Choosing Graphs with Most Plausible Markov Kernels, Ninth International Symposium on Artificial Intelligence and Mathematics (AI & Math 2006), 1-11.
pdf

Abschlussarbeiten (1):

Sun X: Causal inference from statistical data, Universität Karlsruhe, (April-1-2008). PhD thesis

Vorträge (1):

Sun X, Janzing D und Schölkopf B (Dezember-2006): Inferring Causal Directions by Evaluating the Complexity of Conditional Distributions, NIPS 2006 Workshop on Causality and Feature Selection, Whistler, BC, Canada.

Export als:
BibTeX, XML, pubman, Edoc, RTF
Last updated: Montag, 22.05.2017