Contact

Dr. Joris Mooij

Adresse: Spemannstr. 38
72076 Tübingen
Raum Nummer: 226

 

Bild von Mooij, Joris, Dr.

Joris Mooij

Position: Wissenschaftler  Abteilung: 

Präferenzen: 
Referenzen pro Seite: Jahr: Medium:

  
Zeige Zusammenfassung

Artikel (4):

Janzing D, Mooij J, Zhang K, Lemeire J, Zscheischler J, Daniušis P, Steudel B und Schölkopf B (Mai-2012) Information-geometric approach to inferring causal directions Artificial Intelligence 182-183 1-31.
Martens SMM, Mooij JM, Hill NJ, Farquhar J und Schölkopf B (Januar-2011) A graphical model framework for decoding in the visual ERP-based BCI speller Neural Computation 23(1) 160-182.
Mooij JM (August-2010) libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models Journal of Machine Learning Research 11 2169-2173.
pdf
Camps-Valls G, Mooij JM und Schölkopf B (Juli-2010) Remote Sensing Feature Selection by Kernel Dependence Estimation IEEE Geoscience and Remote Sensing Letters 7(3) 587-591.
pdf

Beiträge zu Tagungsbänden (11):

Schölkopf B, Janzing D, Peters J, Sgouritsa E, Zhang K und Mooij J (Juli-2012) On causal and anticausal learning, 29th International Conference on Machine Learning (ICML 2012), International Machine Learning Society, Madison, WI, USA, 1255-1262.
pdf
Stegle O, Lippert C, Mooij J, Lawrence N und Borgwardt K (Januar-2012) Efficient inference in matrix-variate Gaussian models with iid observation noise In: Advances in Neural Information Processing Systems 24, , Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS 2011), Curran, Red Hook, NY, USA, 630-638.
pdf
Mooij J, Janzing D, Schölkopf B und Heskes T (Januar-2012) On Causal Discovery with Cyclic Additive Noise Models In: Advances in Neural Information Processing Systems 24, , Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS 2011), Curran, Red Hook, NY, USA, 639-647.
pdf
Peters J, Mooij J, Janzing D und Schölkopf B (Juli-2011) Identifiability of causal graphs using functional models, 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), AUAI Press, Corvallis, OR, USA, 589-598.
pdf
Mooij JM, Stegle O, Janzing D, Zhang K und Schölkopf B (Juni-2011) Probabilistic latent variable models for distinguishing between cause and effect In: Advances in Neural Information Processing Systems 23, , Twenty-Fourth Annual Conference on Neural Information Processing Systems (NIPS 2010), Curran, Red Hook, NY, USA, 1687-1695.
pdf
Daniusis P, Janzing D, Mooij J, Zscheischler J, Steudel B, Zhang K und Schölkopf B (Juli-2010) Inferring deterministic causal relations, 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010), AUAI Press, Corvallis, OR, USA, 143-150.
pdf
Mooij JM und Kappen B (Juni-2009) Bounds on marginal probability distributions In: Advances in neural information processing systems 21, , Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS 2008), Curran, Red Hook, NY, USA, 1105-1112.
pdf
Janzing D, Peters J, Mooij JM und Schölkopf B (Juni-2009) Identifying confounders using additive noise models, 25th Conference on Uncertainty in Artificial Intelligence (UAI 2009), AUAI Press, Corvallis, OR, USA, 249-257.
pdf
Hoyer PO, Janzing D, Mooij JM, Peters J und Schölkopf B (Juni-2009) Nonlinear causal discovery with additive noise models In: Advances in neural information processing systems 21, , Twenty-Second Annual Conference on Neural Information Processing Systems (NIPS 2008), Curran, Red Hook, NY, USA, 689-696.
pdf
Mooij JM, Janzing D, Peters J und Schölkopf B (Juni-2009) Regression by dependence minimization and its application to causal inference in additive noise models, 26th International Conference on Machine Learning (ICML 2009), ACM Press, New York, NY, USA, 745-752.
pdf
Mooij J und Janzing D (Dezember-2008) Distinguishing between cause and effect, Workshop on Causality: Objectives and Assessment at NIPS 2008 (COA '08), International Machine Learning Society, Madison, WI, USA, 147-156, Series: JMLR Workshop and Conference Proceedings ; 6.
pdf

Vorträge (1):

Mooij J (Dezember-12-2008) Abstract Talk: libDAI, NIPS 2008 Workshop: Machine Learning Open-Source Software, Whistler, BC, Canada.

Export als:
BibTeX, XML, pubman, Edoc, RTF
Last updated: Montag, 22.05.2017