Temporal Adaptation to delayed vestibular feedback

Douglas W. Cunningham, Björn Kreher, Markus von der Heyde, & Heinrich H. Bülthoff
Max-Planck Institute for Biological Cybernetics, Tübingen

communicated by

Background

Rapid and accurate interaction with the world requires that we perceive the consequences of our actions. It has been well demonstrated that delaying visual feedback impairs performance on a range of tasks.

We have recently shown that a few minutes of exposure to delayed feedback induces sensorimotor temporal adaptation.

Temporal adaptation is analogous to prism adaptation. For example, temporal adaptation:

• allows nearly normal performance with the delay.
• severely impairs performance when the delay is removed.
• seems to alter intersensory perceptual judgments (e.g., the delayed visual stimulus and non-delayed proprioceptive stimulus are perceived as occurring simultaneously.

Motivation

As part of an ongoing line of research into how the visual, proprioceptive, and vestibular systems are integrated, we examined the sensitivity and flexibility of the vestibular system to the temporal characteristics of perceptual feedback. Specifically, we asked:

• Does delayed vestibular feedback impair performance?
• If so, is temporal adaptation to delayed vestibular feedback possible?

Methods: Equipment

The vestibular feedback was provided by a motion platform. The platform is capable of motion along all 6 degrees of freedom. Only roll motions were used in this experiment.

Methods: Task

Subjects were asked to stabilize the platform. The platform rotated around the subject’s head, duplicated the motion of an inverted pendulum. Subjects could apply an acceleration to the platform via a joystick. To isolate vestibular feedback, subjects wore a blindfold and headphones (which played white noise).

Results

The more difficulty that one has in stabilizing the platform, the more it will oscillate. Accordingly, the standard deviation of the platform position was used as the primary measure of performance.

• Subjects did well during the Pre-test (immediate feedback).
• The introduction of the delay greatly impaired performance.
• Training with the delay improved performance.
• Post-test performance was worse than Pre-test (negative aftereffect).

Conclusions

Delaying vestibular feedback impairs performance on stabilization tasks. Exposure to the delay clearly enabled subjects to compensate, at least partially, for the delay.

The pattern of compensation for the delay is consistent with temporal adaptation.

douglas.cunningham@tuebingen.mpg.de
http://www.kyb.tuebingen.mpg.de