Admittance-adaptive Model-based Cancellation of Biodynamic Feedthrough

Joost Venrooij, Mark Mulder, David A Abbink, Marinus M. van Paassen, Max Mulder, Frans CT van der Helm, Heinrich H Bülthoff

Max Planck Institute for Biological Cybernetics
Max-Planck-Institut für biologische Kybernetik
Abteilung Wahrnehmung, Kognition und Handlung
Department Human Perception, Cognition and Action
Accelerations

Involuntary control inputs
What is biodynamic feedthrough?

Biodynamic feedthrough (BDFT)
the transfer of accelerations through the human body during the execution of a manual control task, causing involuntary forces being applied to the control device which may result in involuntary control device deflections.
What is biodynamic feedthrough mitigation?

Admittance-adaptive mitigation
Neuromuscular adaptation

Force-position relation depends on:
- Limb weight
- Muscle co-contraction
- Reflexive activity
- Control task
- …
BDFT depends on admittance

Asymptote modeling

• Dynamics can be approximated by simple functions: base functions

• By tuning the asymptotic behavior of the base functions the measured dynamics can be approximated

• A possible base function

\[H_B(s, \omega_n, \zeta, \gamma) = \left(1 + \frac{2\zeta}{\omega_n} s + s^2 / \omega_n^2\right)^\gamma \]

 - order
 - damping
 - natural frequency

• If the order is -1:

\[H_B = \frac{1}{1 + \frac{2\zeta}{\omega_n} s + \frac{1}{\omega_n^2} s^2} = \frac{\omega_n^2}{\omega_n^2 + 2\zeta \omega_n s + s^2} \]

Asymptote modeling

- By tuning the parameters the asymptotes can be adapted
- When multiplying two or more base functions the new dynamics are governed by the sum of the base functions’ asymptotes

Asymptote modeling in action

\[H_{\text{mod}} = K H_{B1} H_{B2} H_{B3} H_{B4} H_{B5} \]

<table>
<thead>
<tr>
<th>(f_n) (nat freq)</th>
<th>(\zeta) (damp)</th>
<th>(\nu) (order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.12</td>
<td>0.31</td>
<td>-1</td>
</tr>
<tr>
<td>1.58</td>
<td>0.37</td>
<td>+2</td>
</tr>
<tr>
<td>2.22</td>
<td>0.54</td>
<td>-2</td>
</tr>
<tr>
<td>5.22</td>
<td>0.49</td>
<td>+2</td>
</tr>
<tr>
<td>7.02</td>
<td>0.43</td>
<td>-1</td>
</tr>
</tbody>
</table>

Asymptote modeling

- Benefits of asymptote modeling
 - Systematic construction of model structure
 - Create complex model from elementary elements
 - Parameters retain their mathematical interpretation

- Parameters determined by minimizing difference between measured dynamics and model

Experiment description

• Goal: proof-of-concept for admittance-adaptive model-based BDFT cancellation approach

• Experiment loosely based on a rotorcraft application

• Task: fly through virtual tunnel: highway-in-the-sky (HITS)

• Neuromuscular adaptation: ‘stiff’ (PT) and ‘relaxed’ (RT)
Experiment conditions

- **HITS Tunnel (TUN)**
 - Straight tunnel (STR)
 - Curved tunnel (CUR)

- **Task (TSK)**
 - Position task (PT): “stiff”
 - Relax task (RT): “relax”

- **Identification measurements**

- **Condition (COND)**
 - Static (STA): motion OFF (no BDFT)
 - Motion (MOT): motion ON, cancellation OFF
 - Cancellation (CAN): motion ON, cancellation ON
Experiment description: metrics

- Cancellation percentage: indication for quality of cancellation

\[P_{can} = \left(1 - \frac{RMS(\theta_{can}^{M_{dist}}(t))}{RMS(\theta_{cd}^{M_{dist}}(t))} \right) \cdot 100\% \]

- Average heading error: indication of control performance

\[\mu_{\psi_e} = \frac{1}{N} \sum_{k=1}^{N} |\psi_{tar}(k) - \psi_{cur}(k)| \]

- RMS of steering speed: indication of control effort

\[E_{\dot{\theta}_{res}} = RMS(\dot{\theta}_{cd}^{res}(t)) \]
Hypotheses

• **BDFT hypothesis**: due to BDFT performance decreases and effort increase in MOT w.r.t. STA condition

\[
\text{STA}_{\text{error}} < \text{MOT}_{\text{error}} \quad \& \quad \text{STA}_{\text{effort}} < \text{MOT}_{\text{effort}}
\]

• **Cancellation hypothesis**: due to cancellation performance increase and effort decrease in CAN w.r.t. MOT condition

\[
\text{CAN}_{\text{error}} < \text{MOT}_{\text{error}} \quad \& \quad \text{CAN}_{\text{effort}} < \text{MOT}_{\text{effort}}
\]
Results: cancellation metric

PT – CAN

RT – CAN
Results: performance (tracking error)
Results: effort (steering speed)
Conclusions

• Hypotheses confirmed
 – BDFT hypothesis:
 \[\text{STA}_{\text{error}} < \text{MOT}_{\text{error}} \quad \& \quad \text{STA}_{\text{effort}} < \text{MOT}_{\text{effort}} \]
 – Cancellation hypothesis:
 \[\text{CAN}_{\text{error}} < \text{MOT}_{\text{error}} \quad \& \quad \text{CAN}_{\text{effort}} < \text{MOT}_{\text{effort}} \]

• This demonstrates the effectiveness of the proposed mitigation method

• Future challenge: obtain a reliable online estimate of the neuromuscular admittance