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A Passivity-Based Decentralized Approach for the Bilateral
Teleoperation of a Group of UAVs with Switching Topology

Antonio Franchi, Paolo Robuffo Giordano, Cristian Secchi, Hyoung Il Son, and Heinrich H. Bülthoff

Abstract— In this paper, a novel distributed control strategy
for teleoperating a fleet of Unmanned Aerial Vehicles (UAVs)
is proposed. Using passivity based techniques, we allow the
behavior of the UAVs to be as flexible as possible with arbitrary
split and join decisions while guaranteeing stability of the
system. Furthermore, the overall teleoperation system is also
made passive and, therefore, characterized by a stable behavior
both in free motion and when interacting with unknown passive
obstacles. The performance of the system is validated through
semi-experiments.

I. INTRODUCTION

For several applications like surveillance, search and rescue
and exploration of wide areas, the use of a group of simple
robots rather than a single complex robot has proven to
be very effective and the problem of coordinating a group
of agents has received a lot of attention by the robotics
community (see [1] for a survey). Nevertheless, when the
tasks become complex (e.g., the exploration of a very clut-
tered, possibly unknown, environment for search and rescue
applications), complete autonomy is still far to be reached
and human’s intervention/assistance is necessary.

In this context, teleoperation systems, where an operator
drives a remote robot through a local interface, allow to
exploit human’s intelligence to solve tasks too complex to
be solved autonomously by nowadays robots. In particular, it
has been widely proven that the use of bilateral teleoperation
systems, where a force information is fed back to the
user, allows to obtain superior performance with respect to
unilateral teleoperation where no feedback is present [2].

The goal of this paper is to study the problem of establish-
ing a bilateral teleoperation system for remotely controlling
groups of mobile robots in a distributed way. We focus our
attention on flying robots (UAVs), because of their high
motion flexibility and potential pervasivity in dangerous or
unaccessible locations. However our results may be easily
applied to ground, marine, and submarine robots as well. In
our envisaged teleoperation system, the UAVs should possess
some level of local autonomy and act as a group, e.g., by
maintaining a desired formation, by avoiding obstacles, and

A. Franchi, P. Robuffo Giordano, and H. I. Son are with the Max
Planck Institute for Biological Cybernetics, Spemannstraße 38, 72076
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by performing additional local tasks. At the same time, the
human operator should be in control of the overall UAV
motion and receive, through haptic feedback, suitable cues
informative enough of the remote UAV/environment state. A
lot of interest is arising in the robotics community in these
topics, see, for instance, [3], [4], [5] to name a few. However,
this kind of research is still far from being mature under
many aspects.

Bilaterally controlling a system where a single master
drives multiple slaves is more complex than controlling a
traditional single-master/single-slave teleoperation system. In
fact, it is not clear what is the best way to dispatch the action
of the master to the slaves and what kind of force information
to feed back to the master side. In [6], a multi-master/multi-
slave teleoperation system with no delay is developed and a
centralized strategy for controlling the cooperative behavior
of the robots is proposed. On the other hand, for their higher
fault tolerance and lower communication demand, distributed
approaches are preferred for controlling groups of robots
(see, e.g., [1], [7], [8]). In [9], an impedance controller for
teleoperating a group of slaves in a leader-follower modality
is proposed. In [10], a bilateral control strategy that allows
to coordinate the motion between the master and the slaves
under arbitrary time delay is proposed. The main limitation
of these approaches are the centralization (every robot needs
to communicate with the master), and the rigidity of the fleet
which is not allowed, for example, to actively reshape the
formation or to vary its topology online.

In this respect, this paper proposes a framework to imple-
ment a bilateral teleoperation system for controlling remotely
a group of UAVs in a highly distributed way. The operator
controls motion of the overall fleet and feels its actual
motion state and the presence of obstacles. At the same time,
the single UAVs behave in an autonomous way by ensuring
inter-agent and obstacle collision avoidance, and by adapting
online their formation shape and topology via local splitting
and merging decisions.

The theoretical foundation on top of which the paper is
built is passivity based control: passivity theory is exploited
for guaranteeing a stable behavior of the group despite
of autonomous maneuvers, time-varying fleet topology, and
interaction with remote obstacles in a clean and powerful
manner. The rest of the paper is organized as follows: after
some preliminary definitions in Sect. II, Sect. III introduces
one of the main contributions of the paper, i.e., a passivity-
based modeling of the group of UAVs and its interaction
with the environment. Then, Sect. IV briefly describes the
model of the master device and Sect. V summarizes the



whole teleoperation system. Finally, results of several semi-
experiments are reported in Sect. VI and Sect. VII concludes
the paper.

II. PRELIMINARIES

The slave side consists of a group of agents among which
a leader is chosen. The motion of an agent depends on the
motion of the surrounding agents and obstacles. The leader
is a special agent that is also controlled by the master. The
remaining agents (not controlled by the master) are also
referred to as followers.

Furthermore, in order to consider the difference between
the limited workspace of a master robot and the unbounded
one of a UAV, teleoperation is made in the following sense:
the position of the master device becomes a velocity setpoint
for the leader at the slave side, and the mismatch between the
master position and the actual leader velocity is transformed
into a force at the master side in order to transmit to the user
a feeling of the remote side. We believe this information can
provide a feeling of the behavior of the whole fleet since the
other robots at the slave side influence the velocity of the
leader and, consequently, the force fed back to the user.

III. THE SLAVE SIDE

The slave side consists of a group of robots coupled together.
In this section we provide a control strategy for obtaining
a flexible cohesive behavior of the group and, at the same
time, to avoid self-collisions among the robots. We will show
that with the proposed strategy the overall slave side can be
modeled as a passive system. In Sect. III-B we will extend
this result to also take into account split and join decisions
while still preserving passivity.

We consider N agents which can be modeled as floating
masses in R3:{

ṗi = F a
i + F e

i −BiM
−1
i pi

vi = ∂Ki

∂pi
= M−1

i pi
i = 1, . . . , N (1)

where pi ∈ R3 and Mi ∈ R3×3 are the momentum and
the inertia matrix of agent i, respectively, Ki = 1

2p
T
i M

−1
i pi

is the kinetic energy stored by the agent during its motion,
and Bi ∈ R3×3 is a positive definite matrix representing
an artificial damping added for asymptotically stabilizing
the behavior of the agent and also to represent typical
phenomena of aerial robots such as wind/atmospehere drag.
Force F a

i ∈ R3 represents the interaction of agent i with the
other agents, while F e

i ∈ R3 the interaction of agent i with
the environment (obstacles) and the master side through the
teleoperation channel. Finally, vi ∈ R3 is the velocity of the
agent.

Remark 1: Here we assume that the UAVs are endowed
with a Cartesian trajectory tracking controller able to ensure
a closed-loop behavior close enough to Eq. (1) (i.e., with
small/negligible tracking errors). Many UAV tracking con-
trollers proposed in the past literature, such as [11], [12],
could be used in this sense, but we will omit further details
since developing/testing a UAV controller is not the scope
of this paper.

0 1 2 3 4 5 6 7
0

20

40

60

80

100

120

140

160

180

200

d
ij

V
ij

Dd
0

0 1 2 3 4 5 6 7
−120

−100

−80

−60

−40

−20

0

20

40

60

d
ij

F
a ij

d
0

D

Fig. 1: The shape of the interagent potential as a function of the
distance (left), and the corresponding coupling force (right)

From a sensing and communication point of view we
assume that two agents are able to communicate and to
measure their relative position (i.e., they are neighbors) if
and only if their distance is less than D ∈ R+. Furthermore,
an agent can measure the distance from every obstacle which
is at distance less than D.

A. A Passive Cooperative Strategy

In order to achieve a collision free, flexible and cohesive
behavior of the fleet, we exploit the inter-agent coupling
proposed in [8] and inspired to the natural behavior of flocks
of animals [13].

Let dij and d0 < D be the distance between agent i and
agent j, and a desired distance between the agents respec-
tively. For each agent j, agent i computes an interaction force
F a
ij whose magnitude and direction depends on the relative

distance and bearing respectively. In particular, the force is
always directed along the bearing: if dij < d0 a repulsive
force is generated; if dij = d0 a null force is produced; if
d0 < dij ≤ D an attractive force is computed; if dij > D
(i.e., agent i cannot detect agent j) a null force is generated.

This kind of inter-agent potential can be modeled by a
nonlinear elastic element (spring) that interconnects a pair
of agents. A possible potential function V̄ (dij) with such a
desired behavior is reported in Fig. 1. Note that the shape
of the potential becomes linear as dij approaches zero for
providing a bound of the maximum generated force (e.g., to
comply with motor saturations1).

The overall force due to the interaction of agent i with
the rest of the group is then given by a network of the same
nonlinear springs:

F a
i =

∑
j 6=i

F a
ij :=

∑
j 6=i

∂V̄

∂dij
(2)

Remark 2: We note that the overall interaction force can
be computed by each agent in a distributed way. In fact, the
computation is based on the shape of the inter-agent potential
(which is known from the design phase), and on the distance
and bearing or agent j w.r.t. agent i. Note also that, if agent
j is not detected, it is considered as being farther than D
and a null force implemented.

Let xij := xi − xj ∈ R3 be the relative position of agent
i with respect to agent j. The potential reported in Fig. 1 is

1Any lower bounded potential (e.g., the one proposed in [10]) can be
used for generating the interagent forces. When considering the saturation
of the actuators, it is necessary to limit the velocity of two neighboring
agents to a value such that any collision can always be avoided by using
the maximum available force. This can be passively done by acting on the
damping term of each agent.
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a lower bounded function of the scalar distance among the
agents dij = ‖xij‖ and, as a consequence, a lower bounded
function of xij . As proposed in [14], we model the nonlinear
spring representing the interaction between agent i and agent
j as: {

ẋij = vij
F a
ij = ∂V (xij)

∂xij

(3)

where vij = vi − vj is the relative velocity of the agents.
Since the forces are symmetric, the interactions of the

slave side can be modeled as an undirected graph G = (V, E)
where the vertices represent the agents and an edge (i, j)
represents the presence of a spring between agent i and agent
j. Defining p = (pT1 , . . . , p

T
N )T ∈ R3N , B = diag(Bi), x =

(xT12, . . . , x
T
1N , x

T
23, . . . , x

T
2N , . . . , x

T
N−1N )T ∈ R3

N(N−1)
2

and F e = (F eT1 , . . . , F eTN )T ∈ R3N , it can be easily seen
that the slave side is a mechanical system described by:

(
ṗ
ẋ

)
=
[(

0 I
−IT 0

)
−
(
B 0
0 0

)](∂H
∂p
∂H
∂x

)
+GF e

v = GT
(∂H
∂p
∂H
∂x

)
(4)

where

H =
N∑
i=1

Ki +
N−1∑
i=1

N∑
j=i+1

V (xij) (5)

is the total energy of the system, and I = IG ⊗ I3,
with IG being the incidence matrix of the graph G whose
edge numbering is induced by the entries of the vector x.
Furthermore, G =

(
(IN ⊗ I3)T 0T

)T
, with I3 and IN

being the identity matrices of order 3 and N respectively, 0
represents a null matrix of proper dimensions, and ⊗ denotes
the Krönecker product.

Proposition 1: The system represented in Eq. (4) is pas-
sive with respect to the storage function reported in Eq. (5)

Proof:

Ḣ =
(
∂TH
∂p

∂TH
∂x

)(
ṗ
ẋ

)
(6)

and, using Eq. (4) in Eq. (6) and noting that B is positive
definite, we obtain that

Ḣ = −∂
TH

∂p
B
∂H

∂p
+ vTF e ≤ vTF e (7)

which concludes the proof.
As usual in applications involving mobile agents in un-

known environments, we assume that, when they are de-
tected, obstacles are treated as repulsive potentials that
produce a force which is null if the robot is far enough
and grows as the robot comes closer to the obstacle. Such
potentials can also be modeled as virtual springs, that is,
passive systems. It is well known that the interaction between
two passive systems is stable and, therefore, Proposition 1
implies that the robots at the slave side can safely interact
with any passive environment.
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Fig. 2: When the agents split the energy E1 is stored in the spring,
while when they join the energy E2 > E1 is needed to implement
the new desired coupling. In this case, without proper strategies,
an amount E2 − E1 > 0 of energy would be introduced into the
system, thus violating passivity.

B. Split and Join While Preserving the Passivity.

We refer to a split as the cancelation of the coupling force
between a pair of agents i and j even though dij ≤ D. A join
is the (re-)establishment of the coupling, e.g., after a split.
Clearly, a join can happen only if dij ≤ D. In order to keep
the results of this section more general, we will not refer to
a particular strategy to determine the split/join between two
agents, but we will only focus on how to safely implement
them in our context. In the experiments reported in Sect. VI,
inter-agent visibility will be adopted as split criterium.

Intuitively, in the framework developed in Sect. III-A, a
split between two agents mimics the disconnection from the
virtual elastic element that represents their coupling. Thus,
the spring becomes isolated and keeps on storing the same
energy that was storing before the split decision, while the
agents keep on interacting with the rest of the system.

Proposition 2: When two agents split, the passivity of the
slave side is preserved.

Proof: If agent i and agent j split, the behavior of the
slave side can be described by a subgraph of G, G′ = (V ′, E ′),
where V ′ = V and E ′ is obtained by E by erasing the edge
connecting vertex i with vertex j. The behavior of the slave
side in case of split can be modeled by replacing, in Eq. (4),
the incidence matrix I with a new incidence matrix I ′ =
IG′ ⊗ I3. The passivity of the system follows from the same
arguments of Proposition 1.

Remark 3: The fact that passivity is preserved despite of
the change of matrix I in Eq. (4) depends on the fact that I
enters in the definition of a skew-symmetric matrix which
leads to a null term in the energy balance Eq. (7). This
is a very powerful property since it allows to seamlessly
consider arbitrary time varying topologies in a passive and
non destabilizing way.

A join decision, on the other hand, can lead to a violation
of the slave side passivity: when two agents i and j join,
they instantaneously switch from a state characterized by no
interaction, to the inter-agent interaction Eq. (3). This results
in a new edge in E , and in a corresponding update of the
overall incidence matrix I. While a change in I does not
threaten passivity, some extra energy can still be produced
during the join procedure. In fact, in the general case, the
relative distance of two agents at the join decision can be
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different from their relative distance at the split decision,
and this can result in a non passive behavior as shown in
the illustrative example of Fig. 2 where some extra energy
is produced when the agents join.

In order to implement in a passive way the join procedure,
we propose to keep track of the energy dissipated by each
agent. For each agent, we introduce a local variable, that we
call tank [5], [15], for storing the energy dissipated. This
energy reservoir can then be used for implementing the join
without breaking the passivity of the system. Using Eq. (1),
it can be seen that the energy dissipated by agent i because
of the damping is

Di = pTi M
−1
i

T
BiM

−1
i pi. (8)

Considering the tank, we propose to adopt the following
extended dynamics for the agents:

ṗi = F a
i + F e

i −BiM
−1
i pi

ṫi = (1− βi)(αi 1
ti
Di + wi) + βici

yi =
(
M−1
i pi
ti

) (9)

where Ti = 1
2 t

2
i is the function representing the amount

of energy stored in the tank. The quantity αi ∈ {0, 1} is
a design parameter that disables/enables the storage of the
energy dissipated by the system. The quantity βi ∈ {0, 1} is
a design parameters which allows to switch the behavior of
the tank element between a storage mode (i.e., the energy
dissipated by the agent is stored) to a consensus mode (i.e.,
a consensus algorithm is run among the tanks). It is easy to
see that, when the system is in storage mode (βi = 0), we
have that:

Ṫi = αiDi + witi (10)

If αi = 1, all the energy dissipated because of the damping
injection on the dynamics of agent i is stored back into the
tank. This is the energy that can be “used” in the system
without violating the passivity constraint. Because of the
reasons reported in [16], it is wise to disable the energy
storage for avoiding an excess of energy stored that would
allow to implement unstable behaviors in the system. Thus,
we set:

αi =
{

0 if Ti ≥ T̄i
1 otherwise (11)

where T̄i is a proper bound to be selected depending on the
particular application. The input wi can be used to exchange
energy with the tank. In order to avoid singularities in Eq. (9)
(i.e., ti = 0), we also set a threshold ε > 0 below which it
is forbidden to extract energy from the tank.

When the system switches to consensus mode (βi = 1),
the term ci is used for redistributing the energy among
the tanks. A distributed strategy is implemented for equally
leveling the energy stored in the tanks right before the join.
This is done by running a consensus algorithm [1]

Ṫi = −
∑
j∈Ni

(Ti − Tj) (12)

Procedure PassiveJoin
Data: xij , Eij , Tj(tj)

1 Compute V (xij) and ∆E = V (xij)− Eij ;
2 if ∆E ≤ 0 then
3 Store (−∆E)/2 in the tank;

else
4 if Ti(ti) + Tj(tj) < ∆E + 2ε then
5 Run a consensus on the tank variables;
6 if 2Ti(ti) < ∆E + 2ε then
7 Dampen until T (ti) + T (tj) ≥ ∆E + 2ε;

8 Extract ∆E T (ti)/(T (ti) + T (tj)) from the tank;

9 Join;

where Ni indicates the set of neighbors of agent i, namely
the set of agents whose distance with agent i is lower than
D. The energy redistribution can be implemented acting on
the variable ti. In fact, since Ṫi = ṫiti, Eq. (12) is equivalent
to setting

ci = − 1
ti

∑
j∈Ni

(Ti(ti)− Tj(tj)). (13)

When agent i and j split, they save in a local variable
Eij the amount of energy stored by the elastic element that
represents their interconnection just before the split. If agents
i and j never split before, Eij is initialized at the value at
infinity V̄ij(∞) = V̄ij(D).

When two agents i and j want to join, the PassiveJoin
Procedure is run on agent i (and on agent j with proper
modifications on the notation). The procedure requires xij
and Eij , which are locally available on agent i, and T (tj)
that can be sent via local communication by agent j. The
interaction force corresponding to the joining with agent j
is F aij(xij) in Eq. (3). Thus, agent i computes V (xij) and
the quantity ∆E (line 1). If ∆E ≤ 0, the energy needed for
implementing the join is lower than the energy previously
stored in the spring and, therefore, the join process dissipates
energy. Half of the energy dissipated, (−∆E)/2, can be
stored back in the tank of agent i (line 3) and (after the
tank update) the agents can safely join (line 9).

If ∆E > 0, extra energy is needed for implementing the
decision and, at this point, the energy stored in the tanks is
exploited. First, the agents check if there is enough energy in
their tanks to cover for ∆E (line 4). If this is the case, part
of the energy in the tank of agent i is used for implementing
the desired interagent behavior and, therefore, the state of
the tank is updated (line 8). In order to keep an energetic
balance, the energy extracted from the tank of agent i is:

T (ti)
T (ti) + T (tj)

∆E (14)

As before, once the tank is updated the join decision can be
safely implemented (line 9).

If the energy stored in the tanks of the two agents is not
sufficient, there is still a chance to passively join the agents
without intervening directly on the dynamics of the robots.
In fact, it may happen that the tanks of the rest of the fleet, in
average, contain enough energy. Thus (line 5), agent i asks
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the fleet to activate βi in order to switch to consensus mode2.
Then, the consensus is run until the redistribution of the
energy in the tanks is completed. Eventually, all the agents
switch back to normal mode (βi = 0): all the tanks will
contain the same amount of energy, but the total tank energy
will remain unchanged. After this redistribution, agents i and
j check again if there is enough energy in the tanks for
joining (line 6). If this is the case, the tank of agent i is
updated as in Eq. (14) and the join decision is implemented
(lines 8, 9). If, after all, the energy in the tanks is not
yet sufficient, it is necessary to act directly on the robots
to refill the tanks. This is always possible by augmenting
the artificial damping on the agent for increasing the energy
dissipation rate. The damping is augmented to its maximum
value (compatible with the saturation of the motors) until
T (ti) + T (tj) ≥ ∆E and the join decision can be passively
implemented (lines 7, 8, 9).

Remark 4: We assume the convergence time of the con-
sensus to be fast enough compared to the dynamics of the
fleet for joining the agents and re-establishing the desired
behavior as quickly as possible. In fact, if the algorithm
is too slow, the agents may come very close to each other
without feeling any repulsive force. If the consensus is not
fast enough and some dangerous situation is detected, it can
be switched off for dampening the system in order to refill
the tanks.

Remark 5: When the damping of the agents is augmented,
it may take some time to refill the tanks to the desired value
of energy. During this period, agents i and j can still move
because of the interaction with the rest of the group: in this
case, their relative distance dij and the amount of energy
necessary for implementing the join will change. Therefore,
it is necessary to continuously update ∆E when the agents
are in damping mode.

When two agents decide to join, the behavior of the slave
side when the PassiveJoin Procedure is implemented can
be described by the following system:

0@ṗẋ
ṫ

1A =

240@ 0 I 0
−IT 0 ITγ

0 −Iγ 0

1A−
−

 
B 0 0
0 0 0

−(I − β)αPB 0 0

!#0@ ∂H
∂p
∂H
∂x
∂H
∂t

1A+

 
0
0
βc

!
+GF e

v = GT

0@ ∂H
∂p
∂H
∂x
∂H
∂t

1A
(15)

where

H =
N∑
i=1

Ki +
N−1∑
i=1

N∑
j=i+1

V (xij) +
N∑
i=1

Ti (16)

is the augmented total energy of the system. The matrix
Iγ = Γ ◦ (1 ⊗ IG), where ◦ is the element-wise product,
1 =

(
1 1 1

)T
, and Γ is a matrix of proper dimensions

2This can be done by using a distributed procedure (e.g., the classic
flooding algorithm [17]) so that all the agents belonging to the same
connected component of the communication graph set βi = 1.

whose elements represent an energetic interconnection be-
tween tanks and springs. In fact, updating a tank means
transferring part of its energy into the elastic element repre-
senting the interaction between two agents in order to obtain
the desired force. During normal behavior, no energy needs
to be transferred from the tanks into the elastic elements
and, therefore, all the elements of Γ are set to 0. Suppose
now that the tank i needs to transfer some energy into the
elastic element connecting agent i to agent j and that the
state of the elastic element is in the kth position in the
stack of states x. This can be modeled by properly setting
Γi,k as proposed in [5] or [15]. Finally, α = diag(αi) and
β = diag(βi) are matrices containing the mode switching
parameters, P = diag( 1

ti
pTi M

−T
i ), t = (t1, . . . , tN )T , and

c = (c1, . . . , cN )T .
Proposition 3: The system represented in Eq. (15) is

passive.
Proof: Consider as storage function the total energy of

the system H. We have that

Ḣ =
(
∂TH
∂p

∂TH
∂x

∂TH
∂t

)ṗẋ
ṫ

 . (17)

Using Eq. (15) with Eq. (17) we obtain that:

Ḣ = −∂
TH
∂p

B
∂H
∂p

+
∂TH
∂t

(I−β)αPB
∂H
∂p

+β
∂H
∂t

c+vTF e =

h1 + h2 + h3 + vTF e (18)

The system is passive if the sum of the first three terms
of Eq. (18) is lower or equal than 0. The first term h1 is
always non positive because B is positive semidefinite. The
parameter β can either be equal to the null or identity matrix.

When β = 0, h3 = 0 and the second term

h2 =
∂TH
∂t

αPB
∂H
∂p

=
(
t1 . . . tN

)
α


1
t1
D1

...
1
tN
DN

 =
N∑
i=1

αiDi

(19)
is, because of Eq. (11), at most equal to the energy dissipated
by the agents (first term h1). Therefore, Ḣ ≤ vTF e.

When β = I , h2 = 0 and the consensus is running among
the tanks. By recalling Eq. (13), h3 can be written as

h3 =
∂TH
∂t

c =
N∑
i=1

Ṫi. (20)

Because of the property of the consensus, the overall energy
stored in the tanks remains the same and, therefore, h3 = 0
and Ḣ ≤ vTF e.

IV. THE MASTER SIDE

The master can be a generic mechanical system and it can
be modeled by the following Euler-Lagrange equations:

Mm(xm)ẍm + C(xm, ẋm)ẋm +DM ẋm = FM (21)

where Mm represents the inertia matrix, C(xm, ẋm)ẋm is a
term representing the centrifugal and Coriolis effects, DM
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is matrix representing the viscous friction present in the
system. As often happens for master devices, we assume that
gravity effects are compensated by a local controller. The
variables xm and ẋm represent the position and the velocity
of the end-effector. A system described by Eq. (21) is passive
with respect to the force-velocity pair (FM , vm) [18], where
vm := ẋm. This kind of passivity is well suited in standard
passivity based bilateral teleoperation, where the velocity
of the master and the velocity of the slave need to be
synchronized.

Nevertheless, in our setting, in order to consider the
difference between the workspace of the master and that of
the robots at the slave side, it is necessary to synchronize the
position of the master with the velocity of the leader. Un-
fortunately, a mechanical system is not passive with respect
to the position-force pair but it is possible to implement a
local control loop on the master that makes it passive with
respect to the pair (FM , r1) with

r1 = vm + λxm, λ ∈ (0, λmax], (22)

where λmax can be made arbitrarily large by a proper choice
of the damping action DM in (21), see [19]. Using r1, at
steady state, the master is passive w.r.t. its position but,
during transients, the effect of vm can be non negligible.

To remedy this side-effect, we propose to consider the
variable:

rm = ρr1(t) = ρvm + ρλxm, ρ > 0. (23)

The following result then easily follows:
Proposition 4: A mechanical system which has been

made passive with respect to the pair (r1, FM ) is also passive
with respect to the pair (rm, FM )

Proof: Since the system is passive with respect to the
pair (r1, FM ), there exists a lower bounded function Sm such
that

rT1 FM ≥ Ṡ (24)

Using Eq. (23), we have that

rTmFM = ρrT1 FM ≥ Ṡ (25)

which implies that

rTmFM ≥
1
ρ
Ṡ. (26)

Therefore, the system is passive w.r.t the lower bounded
function S̄ = 1

ρS.
Thus, by properly choosing the parameters ρ and λ it

is possible to make negligible the contribution related to
ẋm (by choosing a small ρ), and to make the second term
proportional to the position with a desired scaling factor K
(by choosing λ = K

ρ )3.

3Note that λmax limits the maximum achievable scaling K to Kmax =
ρλmax.

Fh
viFm

Master
rm

Slave

Fs

Obstacle
F e

j

vj
rm Leader

(robot i)

Followers

robot j

Fig. 3: The overall teleoperation system.

V. THE TELEOPERATION SYSTEM
Exploiting the results developed so far, we have that

both master and slave sides are passive systems. Thus, by
designing a proper passive interconnection between the local
and the remote systems will yield a passive bilateral teleop-
eration system characterized by a stable behavior in case
of interaction with passive environments (as the obstacles,
modeled as potentials, with which the fleet is interacting).

Suppose that agent i is chosen as the leader. It is possible
to write F e

i = Fs + F env
i , where F env

i is the component of
the force due to the interaction with the external environment
(obstacles) and Fs is the component due to the interaction
with the master side. Similarly, we can decompose FM as
FM = Fm + Fh, where Fh is the component due to the
interaction with the user and Fm is the force acting on the
master because of the interaction with the slave.

For achieving the desired teleoperation behavior, we pro-
pose to join master and slave using the following intercon-
nection: {

Fs = b(rm − vi)
Fm = −b(rm − vi)

(27)

This is equivalent to joining the master and the leader using a
damper which generates a force proportional to the difference
of the two velocity-like variables of the master and the
leader. Since rm is “almost” the position of the master, we
have that the force fed back to the master and the control
action sent to the leader are the desired ones. The overall
teleoperation system is represented in Fig. 3 and it consists
of the interconnection of a passive master side, a passive
interconnection and a passive slave side. Recalling that the
interconnection of passive systems is again passive [18], we
have that the teleoperation system is passive, as desired.

Remark 6: Intuitively, the followers behave as an environ-
ment the leader is interacting with. In case of no followers,
the steady-state synchronization error between r and vi can
be made arbitrarily small by suitably choosing a (large)
value for b in (27). When some followers are present, the
leader interacts with a passive moving environment. Thus,
at steady state, the synchronization error increases as in
standard bilateral teleoperation (see, e.g., [20]). On the other
hand, this creates a beneficial force Fm on the master that
allows the user to feel the status of the fleet. Indeed, this
force is proportional to the number of followers, to their
velocities and to their relative positions.

Since the teleoperation system is the interconnection of a
local passive master and of a remote passive slave, it is pos-
sible to passively consider communication delays between
local and remote sites using one of the techniques developed
for single master single slave telemanipulation systems, like,
for example, wave variables [20]. In this way, the system
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Fig. 4: Results of the first two semi-experiments. Fig. 4(a):
superimposed behavior of v1(t) (the leader velocity) and rm(t) (the
master command) with no followers. Note the almost perfect match
between the two quantities: the solid and dashed lines are basically
superimposed. Fig. 4(b): force Fm(t) applied to the master from
the slave. The peaks occur during the small deviations of v1(t)
from rm(t). Figs. 4(c–d): same as Figs. 4(a–b) when 5 followers
are considered. Note the steady state error between v1(t) and rm(t)

because of the friction exerted by the followers on the leader.

would keep on exhibiting a stable behavior independently of
any delay between local and remote site.

VI. SEMI-EXPERIMENTS
In this Section, we will report the result of several semi-

experiments conducted to validate the theoretical framework
developed so far. We used a commercial haptic device
(Omega6, Force Dimension) as a master robot. The Omega6
is a 6-DOF haptic device with 3 translational actuated axes,
and 3 rotational non-actuated axes, and its local control loop
runs at about 2.5 kHz on a dedicated gnu/linux machine. The
UAVs dynamics and control logic, on the other hand, were
simulated in a custom-made simulation environment based
on the Ogre3D engine (for 3D rendering and computational
geometry computations), the PhysX libraries for simulating
the physical interaction between the UAVs and the environ-
ment, and the MIP framework (http://www.dis.uniroma1.it-
/∼labrob/software/MIP) for the multi-robot communication
and control aspects.

The criterium adopted to decide a split between agents (see
Sect. III-B) is visibility: we assume that two agents decide to
split whenever their line-of-sight is obstructed by an obstacle
(or by another UAV), thus simulating the possible loss of
visual/radio connectivity in this kind of situations. Of course,
different criteria are possible, but they are equivalent w.r.t. the
conceptual behavior of the PassiveJoin Procedure. We
assume w.l.o.g. that the leader is agent 1.

In the first two semi-experiments, whose results are re-
ported in Figs. 4(a–d), we tested the overall performance of

the teleoperation scheme during free-motion (i.e., sufficiently
away from obstacles). The goal was to show the stable
behavior of our teleoperation system and to point out its
force reflection characteristics in a steady-state regime.

In the first case (Figs. 4(a–b)), no followers are considered,
i.e., N = 1, and the sole leader is teleoperated with piece-
wise constant velocity commands. Figure 4(a) shows the
superimposition of the leader velocity v1 (solid lines) and
the master “position” rm (dashed lines): as clear from the
plot, v1 and rm match almost perfectly during the whole
operation — the solid lines are basically superimposed on
the dashed lines, indicating high coordination between the
master command rm and the slave velocity v1. Figure 4(b)
reports the behavior of Fm over time: one can note that Fm is
always negligible apart from some transient peaks occurring
during the sudden changes of the commanded velocity rm.
Indeed, in these phases the second-order dynamics (Eq. (1))
of agent 1 naturally lags behind the commanded velocity rm
because of the viscous coupling Fs in (Eq. (27)). These force
cues, however, are useful to inform the operator about the
(transient) discrepancy between v1 and rm.

In the second semi-experiment, we tested the same free-
motion scenario but by considering 5 followers coupled
with the leader. Figures 4(c–d) report the same quantities
of the previous experiment. In this case, we can note in
Fig. 4(c) a persistent (and larger) steady-state error between
v1 and rm during all phases: this is the cumulative effect
of the follower’s elastic couplings and damping terms Bi
which keep dissipating energy during the motion and acts
as a major drag on the leader. The force Fm in Fig. 4(d)
correctly reproduces this mismatch by displaying to the user
a constant force cue opposing to the direction of the motion,
thus conveying the information that the user is actually
‘pulling a load with friction’. We note again that this steady-
state mismatch is the expected behavior of our teleoperation
system, see Remark 6.

As last semi-experiment, we report the teleoperation of 3
UAVs (1 leader and 2 followers) moving in an environment
cluttered with obstacles, thus enabling the possibility of
split and rejoin decisions. The parameters of the inter-agent
potential V̄ (dij) were set to d0 = 0.2 [m], D = 6 [m],
and V̄ (D) = 31.5 [J]. Figures 5(a–b) show the evolution
of the 3 tank energy reservoirs Ti, and of the 3 inter-agent
potentials V (xij). At the beginning of the experiment, two
agents are disconnected (one potential starts at the ‘infinity’
value V̄ (D)) and at time t1 = 3 [s] of motion they join
getting closer than D. Note that this join decision does not
affect the tank behavior (they keep on storing the dissipated
energy (Eq. (8))) because ∆E ≤ 0 by construction in this
case. During the rest of the motion, several split and join
decisions are taken, and in particular at times {t2 = 16, t3 =
34, t4 = 51. t5 = 60} [s] the tank energies are used to re-
establish the links, i.e., when positive jumps of the inter-
agent potentials (with ∆E > 0) are counter-balanced by
negative jumps of the tank values. Finally, Fig. 5(c) shows
the behavior of Eext(t) =

∫ t
t0
vT (τ)F e(τ)dτ (blue line) and

Ein(t) = H(t) − H(t0) (red line) over time. One can then
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Fig. 5: Results of the third semi-experiment: Figs. 5(a–b): behavior
of T (t) and V (xij(t)) over time during several split and join
decisions. Note how the positive jumps in V (xij(t)) correspond
to negative jumps in T (t) (energy exchange between tanks and
link potentials. Figure 5(c): behavior of Eext(t) (blue line) Ein(t)

(red line), validating the slave side passivity condition (Eq. (18))
also during the split/join decisions.

check that Ein(t) ≤ Eext(t), ∀t ≥ t0, as required by the
slave-side passivity condition (Eq. (18)).

Finally, we also encourage the reader to watch the video
clip attached to the paper where a teleoperation of 6 UAVs in
a cluttered environment with frequent split and join decisions
can be appreciated.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed a distributed control

strategy based on passivity for teleoperating a group of
UAVs. By monitoring the exchange of energy among the
robots, it is possible to constrain as less as possible the
behavior of the fleet which can smoothly change the shape
of its formation and also perform split and join actions in
a stable way. By properly passifying the master robot, a
bilateral teleoperation system that couples the motion of the
master to the velocity of the slave side has been proposed.

In the future, we aim at running a comparative analysis of
the techniques available in the single-master single slave tele-
operation (e.g., wave variables) for determining which one
can be better adapted to the proposed multi-slave scenario.
Furthermore, we would like to consider more leaders at the
slave side in order to have a better control of the motion
of the UAVs. Finally, we also plan to passively implement
some extra forces at the master side in order to convey some
extra information about the connectivity and for improving
the telepresence feeling of the user.
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